Java——多线程之Lock锁

Java多线系列文章是Java多线程的详解介绍,对多线程还不熟悉的同学可以先去看一下我的这篇博客Java基础系列3:多线程超详细总结,这篇博客从宏观层面介绍了多线程的整体概况,接下来的几篇文章是对多线程的深入剖析。

 

Lock锁

1、简介

1、从Java5开始,Java提供了一种功能更强大的线程同步机制——通过显式定义同步锁对象来实现同步,在这种机制下,同步锁由Lock对象充当。

2、Lock 提供了比synchronized方法和synchronized代码块更广泛的锁定操作,Lock允许实现更灵活的结构,可以具有差别很大的属性,并且支持多个相关的Condition对象。

3、Lock是控制多个线程对共享资源进行访问的工具。通常,锁提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问共享资源之前应先获得Lock对象。

4、某些锁可能允许对共享资源并发访问,如ReadWriteLock(读写锁),Lock、ReadWriteLock是Java5提供的两个根接口,并为Lock 提供了ReentrantLock(可重入锁)实现类,为ReadWriteLock提供了ReentrantReadWriteLock 实现类。

5、Java8新增了新型的StampedLock类,在大多数场景中它可以替代传统的ReentrantReadWriteLock。ReentrantReadWriteLock 为读写操作提供了三种锁模式:Writing、ReadingOptimistic、Reading。

 

 

2、Lock锁使用

class X{
	//定义锁对象
	private final ReentrantLock lock=new ReentrantLock();
	
	//定义需要保证线程安全的方法
	public void m() {
		//加锁
		lock.lock();
		try {
			//需要保证线程安全的代码
		}
		finally {
			lock.unlock();
		}
	}
}

  

 

ReentranLock  

1、简介

在Java多线程中,可以使用synchronized关键字来实现线程之间同步互斥,但在JDK1.5中新增加了ReentrantLock类也能达到同样的效果,并且在扩展功能上也更加强大,比如具有嗅探锁定、多路分支通知等功能,而且在使用上也比synchronized更加的灵活。

 

2、使用ReentranLock实现同步

既然ReentrantLock类在功能上相比synchronized更多,那么就以一个初步的程序示例来介绍一下ReentrantLock类的使用。

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class MyService{
	private Lock lock=new ReentrantLock();
	
	public void testMethod() {
		lock.lock();
		for(int i=0;i<5;i++) {
			System.out.println("ThreadName= "+Thread.currentThread().getName()+(" "+(i+1)));
		}
		lock.unlock();
	}
}

class MyThread extends Thread{
	private MyService service;
	
	public MyThread(MyService service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.testMethod();
	}
}



public class LockTest {
	
	public static void main(String[] args) {
		MyService service=new MyService();
		MyThread t1=new MyThread(service);
		MyThread t2=new MyThread(service);
		MyThread t3=new MyThread(service);
		MyThread t4=new MyThread(service);
		MyThread t5=new MyThread(service);
		t1.start();
		t2.start();
		t3.start();
		t4.start();
		t5.start();
		
	}

}

  

运行结果:

ThreadName= Thread-2 1
ThreadName= Thread-2 2
ThreadName= Thread-2 3
ThreadName= Thread-2 4
ThreadName= Thread-2 5
ThreadName= Thread-0 1
ThreadName= Thread-0 2
ThreadName= Thread-0 3
ThreadName= Thread-0 4
ThreadName= Thread-0 5
ThreadName= Thread-3 1
ThreadName= Thread-3 2
ThreadName= Thread-3 3
ThreadName= Thread-3 4
ThreadName= Thread-3 5
ThreadName= Thread-4 1
ThreadName= Thread-4 2
ThreadName= Thread-4 3
ThreadName= Thread-4 4
ThreadName= Thread-4 5
ThreadName= Thread-1 1
ThreadName= Thread-1 2
ThreadName= Thread-1 3
ThreadName= Thread-1 4
ThreadName= Thread-1 5

  

从运行的结果来看,当前线程打印完毕之后将锁进行释放,其他线程才可以继续打印。线程打印的数据是分组打印,因为当前线程已经持有锁,但线程之间打印的顺序是随机的。lock.lock()是对当前线程加锁,当线程执行完毕后调用lock.unlock()释放锁,这时候其他线程可以去获取锁,至于是哪一个线程可以争抢到锁还是看CPU的调度

 

3、使用Condition实现等待/通知:错误用法与解决

关键字synchronized与wait()和notify()/notifyAll()方法相结合可以实现等待/通知模式,类ReentrantLock也可以实现同样的功能,但需要借助于Condition对象。Condition类是在JDK5中出现的技术,使用它有更好的灵活性,比如可以实现多路通知功能,也就是在一个Lock对象里面可以创建多个Condition(即对象监视器)实例,线程对象可以注册在指定的Condition中,从而可以有选择性地进行线程通知,在调度线程上更加灵活。

在使用notify(O/notifyAll0方法进行通知时,被通知的线程却是由JVM随机选择的。但使用ReentrantLock结合Condition类是可以实现前面介绍过的“选择性通知”,这个功能是非常重要的,而且在Condition类中是默认提供的。

而synchronized就相当于整个Lock对象中只有一个单一的Condition对象,所有的线程都注册在它一个对象的身上。线程开始notifyAll()时,需要通知所有的WAITING线程,没有选择权,会出现相当大的效率问题。

 

package Thread05;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class MyService{
	private Lock lock=new ReentrantLock();
	private Condition condition=lock.newCondition();
	public void await() {
		try {
			lock.lock();
			System.out.println("A");
			condition.await();
			System.out.println("B");
		}catch(InterruptedException e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
			System.out.println("锁释放了");
		}
	}
}

class MyThread extends Thread{
	private MyService service;
	
	public MyThread(MyService service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.await();
	}
}



public class LockTest {
	
	public static void main(String[] args) {
		MyService service=new MyService();
		MyThread thread=new MyThread(service);
		thread.start();
		
	}

}

  

输出结果:

A

  

我们可以看到输出结果只有一个A,并没有其他的输出,这是因为调用Condition的await()方法,使当前执行任务的线程进入了等待的状态

注意:在使用Condition方法时要先调用lock.lock()代码获得同步监视器

 

4、正确使用Condition实现等待/通知

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class MyService{
	private Lock lock=new ReentrantLock();
	private Condition condition=lock.newCondition();
	public void await() {
		try {
			lock.lock();
			System.out.println("await时间为"+System.currentTimeMillis());
			condition.await();
		}catch(InterruptedException e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
			System.out.println("锁释放了");
		}
	}
	
	public void signal() {
		try {
			lock.lock();
			System.out.println("signal时间为"+System.currentTimeMillis());
			condition.signal();
		}finally {
			lock.unlock();
		}
	}
}

class MyThread extends Thread{
	private MyService service;
	
	public MyThread(MyService service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.await();
	}
}


public class LockTest {
	
	public static void main(String[] args) throws InterruptedException {
		MyService service=new MyService();
		MyThread thread=new MyThread(service);
		thread.start();
		Thread.sleep(3000);
		service.signal();
		
	}

}

  

运行结果:

await时间为1575599786039
signal时间为1575599789051
锁释放了

  

成功实现等待/通知模式

Object类中的wait()方法相当于Condition类中的await()方法,Object类中的wait(long timeout)方法相当于Condition类中的await(long time,TimeUnit unit)方法。Object类中的notify()方法相当于Condition类中的signal()方法。Object类中的notifyAll()方法相当于Condition类中的signalAll()方法。

 

5、使用多个Condition实现通知所有线程

前面使用一个Condition对象来实现等待/通知模式,其实Condition对象也可以创建多个。那么一个Condition对象和多个Condition对象在使用上有什么区别呢?

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class MyService{
	private Lock lock=new ReentrantLock();
	private Condition condition=lock.newCondition();
	public void awaitA() {
		try {
			lock.lock();
			System.out.println("begin awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
			condition.await();
			System.out.println("end awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
		}catch(InterruptedException e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
		}
	}
	
	public void awaitB() {
		try {
			lock.lock();
			System.out.println("begin awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
			condition.await();
			System.out.println("end awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
		}catch(InterruptedException e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
		}
	}
	
	public void signalAll() {
		try {
			lock.lock();
			System.out.println("signalAll时间为"+System.currentTimeMillis());
			condition.signalAll();
		}finally {
			lock.unlock();
		}
	}
}

class MyThreadA extends Thread{
	private MyService service;
	
	public MyThreadA(MyService service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.awaitA();
	}
}

class MyThreadB extends Thread{
private MyService service;
	
	public MyThreadB(MyService service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.awaitB();
	}
}


public class LockTest {
	
	public static void main(String[] args) throws InterruptedException {
		MyService service=new MyService();
		MyThreadA threadA=new MyThreadA(service);
		threadA.setName("A");
		threadA.start();
		MyThreadB threadB=new MyThreadB(service);
		threadB.setName("B");
		threadB.start();
		Thread.sleep(3000);
		service.signalAll();
	}

}

  

运行结果:

begin awaitA时间为1575600904529ThreadNameA
begin awaitB时间为1575600904545ThreadNameB
signalAll时间为1575600907537
end awaitA时间为1575600907537ThreadNameA
end awaitB时间为1575600907537ThreadNameB

  

6、使用多个Condition实现通知部分线程

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class MyService{
	private Lock lock=new ReentrantLock();
	private Condition conditionA=lock.newCondition();
	private Condition conditionB=lock.newCondition();
	public void awaitA() {
		try {
			lock.lock();
			System.out.println("begin awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
			conditionA.await();
			System.out.println("end awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
		}catch(InterruptedException e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
		}
	}
	
	public void awaitB() {
		try {
			lock.lock();
			System.out.println("begin awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
			conditionB.await();
			System.out.println("end awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
		}catch(InterruptedException e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
		}
	}
	
	//通知A
	public void signalAll_A() {
		try {
			lock.lock();
			System.out.println("signalAll_A时间为"+System.currentTimeMillis()+"ThreadName="+Thread.currentThread().getName());
			conditionA.signalAll();
		}finally {
			lock.unlock();
		}
	}
	
	//通知B
	public void signalAll_B() {
		try {
			lock.lock();
			System.out.println("signalAll_A时间为"+System.currentTimeMillis()+"ThreadName="+Thread.currentThread().getName());
			conditionA.signalAll();
		}finally {
			lock.unlock();
		}
	}
}

class MyThreadA extends Thread{
	private MyService service;
	
	public MyThreadA(MyService service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.awaitA();
	}
}

class MyThreadB extends Thread{
private MyService service;
	
	public MyThreadB(MyService service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.awaitB();
	}
}


public class LockTest {
	
	public static void main(String[] args) throws InterruptedException {
		MyService service=new MyService();
		MyThreadA threadA=new MyThreadA(service);
		threadA.setName("A");
		threadA.start();
		MyThreadB threadB=new MyThreadB(service);
		threadB.setName("B");
		threadB.start();
		Thread.sleep(3000);
		service.signalAll_A();
	}

}

  

运行结果:

begin awaitA时间为1575601785167ThreadNameA
begin awaitB时间为1575601785167ThreadNameB
signalAll_A时间为1575601788181ThreadName=main
end awaitA时间为1575601788181ThreadNameA

  

上面的代码实现通知部分线程,定义了两个Condition,在测试类中只是唤醒了A,从输出结果可以看出,线程A被唤醒了,线程B依然处于等待状态

 

7、实现生产者/消费者模式:一个生产者一个消费者

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class MyService{
	private Lock lock=new ReentrantLock();
	private Condition condition=lock.newCondition();
	private boolean hasValue=false;
	public void set() {
		try {
			lock.lock();
			while(hasValue==true) {
				condition.await();
			}
			System.out.println("打印★");
			hasValue=true;
			condition.signal();
		}catch(Exception e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
		}
	}
	
	public void get() {
		try {
			lock.lock();
			while(hasValue==false) {
				condition.await();
			}
			System.out.println("打印☆");
			hasValue=false;
			condition.signal();
		}catch(Exception e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
		}
	}
}

class MyThreadA extends Thread{
	private MyService service;
	
	public MyThreadA(MyService service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		for(int i=0;i 
 

  

运行结果:

 

 

 上面代码实现了生产者消费者的功能,一个生产一个消费,如果hasValue=false相当于生产者没有生产产品,当前没有可消费的产品,所以调用生产者生产,当hasValue=true说明当前有产品还没有被消费,那么生产者应该停止生产,调用消费者消费

 

8、实现生产者/消费者模式:多个生产者多个消费者

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class MyService{
	private Lock lock=new ReentrantLock();
	private Condition condition=lock.newCondition();
	private boolean hasValue=false;
	public void set() {
		try {
			lock.lock();
			while(hasValue==true) {
				System.out.println("有可能★★连续");
				condition.await();
			}
			System.out.println("打印★");
			hasValue=true;
			condition.signal();
		}catch(Exception e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
		}
	}
	
	public void get() {
		try {
			lock.lock();
			while(hasValue==false) {
				System.out.println("有可能☆☆连续");
				condition.await();
			}
			System.out.println("打印☆");
			hasValue=false;
			condition.signal();
		}catch(Exception e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
		}
	}
}

class MyThreadA extends Thread{
	private MyService service;
	
	public MyThreadA(MyService service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		for(int i=0;i 
 

  

运行结果:

 

 

 运行程序后出现了假死,因为出现了生产者释放生产者或者消费者释放消费者的情况,那么该如何解决这个问题呢?在使用synchronized实现生产者消费者的时候我们也遇到过这种情况,当时是使用notifyAll()来解决这个问题的,那么现在使用锁我们则用signalAll()方法来解决死锁问题,将上述代码中signal()方法改成signalAll()即可

修改后程序运行结果如下

 

 

 程序一直正常运行,没有出现死锁情况

 

9、公平锁和非公平锁

公平与非公平锁:锁Lock分为“公平锁”和“非公平锁”,公平锁表示线程获取锁的顺序是按照线程加锁的顺序来分配的,即先来先得的FIFO先进先出顺序。而非公平锁就是一种获取锁的抢占机制,是随机获得锁的,和公平锁不一样的就是先来的不一定先得到锁,这个方式可能造成某些线程一直拿不到锁,结果也就是不公平的了。

创建公平锁和非公平锁ReentrantLock lock=new ReentrantLock(boolean a),创建锁时如果a为true的话,则创建的是公平锁,如果a为false的话,则创建的是非公平锁

 

公平锁

import java.util.concurrent.locks.ReentrantLock;

class Service{
	private ReentrantLock lock;
	public Service(boolean isFair) {
		lock=new ReentrantLock(isFair);
	}
	
	public void serviceMethod() {
		try {
			lock.lock();
			System.out.println("ThreadName="+Thread.currentThread().getName()+"获得锁定");
		}catch(Exception e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
		}
	}
}




public class LockTest {
	
	public static void main(String[] args) throws InterruptedException {
		final Service service=new Service(true);
		Runnable runnable=new Runnable() {
			
			@Override
			public void run() {
				System.out.println("★线程"+Thread.currentThread().getName()+"运行了");
				service.serviceMethod();
			}
		};
		Thread[] threadArray=new Thread[10];
		for(int i=0;i<10;i++) {
			threadArray[i]=new Thread(runnable);
		}
		for(int i=0;i<10;i++) {
			threadArray[i].start();
		}
		
	}

}

  

运行结果:

★线程Thread-2运行了
★线程Thread-3运行了
★线程Thread-0运行了
★线程Thread-9运行了
★线程Thread-4运行了
★线程Thread-8运行了
★线程Thread-5运行了
★线程Thread-1运行了
★线程Thread-6运行了
★线程Thread-7运行了
ThreadName=Thread-2获得锁定
ThreadName=Thread-6获得锁定
ThreadName=Thread-1获得锁定
ThreadName=Thread-8获得锁定
ThreadName=Thread-0获得锁定
ThreadName=Thread-7获得锁定
ThreadName=Thread-5获得锁定
ThreadName=Thread-3获得锁定
ThreadName=Thread-9获得锁定
ThreadName=Thread-4获得锁定

  

结果显示输出基本是呈有序的状态,这就是公平锁的特点

 

非公平锁

import java.util.concurrent.locks.ReentrantLock;

class Service{
	private ReentrantLock lock;
	public Service(boolean isFair) {
		lock=new ReentrantLock(isFair);
	}
	
	public void serviceMethod() {
		try {
			lock.lock();
			System.out.println("ThreadName="+Thread.currentThread().getName()+"获得锁定");
		}catch(Exception e) {
			e.printStackTrace();
		}finally {
			lock.unlock();
		}
	}
}




public class LockTest {
	
	public static void main(String[] args) throws InterruptedException {
		final Service service=new Service(false);
		Runnable runnable=new Runnable() {
			
			@Override
			public void run() {
				System.out.println("★线程"+Thread.currentThread().getName()+"运行了");
				service.serviceMethod();
			}
		};
		Thread[] threadArray=new Thread[10];
		for(int i=0;i<10;i++) {
			threadArray[i]=new Thread(runnable);
		}
		for(int i=0;i<10;i++) {
			threadArray[i].start();
		}
		
	}

}

  

运行结果:

★线程Thread-2运行了
★线程Thread-9运行了
★线程Thread-7运行了
★线程Thread-0运行了
★线程Thread-3运行了
★线程Thread-1运行了
★线程Thread-6运行了
★线程Thread-5运行了
★线程Thread-4运行了
ThreadName=Thread-1获得锁定
★线程Thread-8运行了
ThreadName=Thread-8获得锁定
ThreadName=Thread-2获得锁定
ThreadName=Thread-7获得锁定
ThreadName=Thread-5获得锁定
ThreadName=Thread-3获得锁定
ThreadName=Thread-4获得锁定
ThreadName=Thread-9获得锁定
ThreadName=Thread-0获得锁定
ThreadName=Thread-6获得锁定

  

非公平锁的运行结果基本上是乱序的,说明先start()启动的线程不代表先获得锁

 

10、ReentranLock方法概述:

(1)、int getHoldCount()

  getHoldCount()的作用是查询当前线程保持此锁定的个数,也就是调用lock()方法的次数。

 

(2)、int getQueueLength()

  getQueueLength()的作用是返回正等待获取此锁定的线程估计数,比如有5个线程,1个线程首先执行awai()方法,那么在调用getQueueLength()方法后返回值是4,说明有4个线程同时在等待lock的释放。

 

(3)、int getWaitQueueLength(Condition condition)

  getWaitQueueLength(Condition condition)的作用是返回等待与此锁定相关的给定条件Condition的线程估计数,比如有5个线程,每个线程都执行了同一个condition对象的await()方法,则调用getWaitQueueLength(Condition condition)方法时返回的int值是5。

 

(4)、boolean hasQueuedThread(Thread thread)

  hasQueuedThread(Thread thread)的作用是查询指定的线程是否正在等待获取此锁定

  hasQueuedThreads()的作用是查询是否有线程正在等待获取此锁定。

 

(5)、boolean hasWaiters(Condition condition)

  hasWaiters(Condition condition)的作用是查询是否有线程正在等待与此锁定有关的condition条件。

 

(6)、boolean isFair()

  isFair()的作用是判断是不是公平锁

 

(7)、boolean isHeldByCurrentThread()

  isHeldByCurrentThread的作用是查询当前线程是否保持此锁定

 

(8)、boolean isLocked()

  isLocked()的作用是查询此锁定是否由任意的线程保持

 

ReentrantReadWriteLock

类ReentrantLock具有完全互斥排他的效果,即同一时间只有一个线程在执行ReentrantLock.lock()方法后面的任务。这样做虽然保证了实例变量的线程安全性,但效率却是非常低下的。所以在JDK中提供了一种读写锁ReentrantReadWriteLock类,使用它可以加快运行效率,在某些不需要操作实例变量的方法中,完全可以使用读写锁ReentrantReadWriteLock 来提升该方法的代码运行速度。

读写锁表示也有两个锁,一个是读操作相关的锁,也称为共享锁;另一个是写操作相关的锁,也叫排他锁。也就是多个读锁之间不互斥,读锁与写锁互斥,写锁与写锁互斥。在没有线程Thread进行写入操作时,进行读取操作的多个Thread都可以获取读锁,而进行写入操作的Thread只有在获取写锁后才能进行写入操作。即多个Thread可以同时进行读取操作,但是同一时刻只允许一个Thread进行写入操作。

 

一、ReentrantReadWriteLock读读共享

import java.util.concurrent.locks.ReentrantReadWriteLock;

class Service{
	private ReentrantReadWriteLock lock=new ReentrantReadWriteLock();
	
	public void read() {
		try {
			try {
				lock.readLock().lock();
				System.out.println("获取读锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis());
				Thread.sleep(10000);
			}finally {
				lock.readLock().unlock();
			}
		}catch(Exception e) {
			e.printStackTrace();
		}
	}
}


class MyThreadA extends Thread{
	private Service service;
	
	public MyThreadA(Service service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.read();
	}
}

class MyThreadB extends Thread{
	private Service service;
	
	public MyThreadB(Service service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.read();
	}
}

public class LockTest {
	
	public static void main(String[] args) throws InterruptedException {
		Service service=new Service();
		MyThreadA a=new MyThreadA(service);
		a.setName("A");
		MyThreadB b=new MyThreadB(service);
		b.setName("B");
		a.start();
		b.start();
	}

}

  

运行结果:

获取读锁A 1575611161158
获取读锁B 1575611161158

  

从输出结果打印的时间来看,两个线程几乎同时进入lock()方法后面的代码。说明在此使用了lock.readLock()读锁可以提高程序运行效率,允许多个线程同时执行lock()方法后面的代码。

 

二、ReentrantReadWriteLock写写互斥

import java.util.concurrent.locks.ReentrantReadWriteLock;

class Service{
	private ReentrantReadWriteLock lock=new ReentrantReadWriteLock();
	
	public void write() {
		try {
			try {
				lock.writeLock().lock();
				System.out.println("获取写锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis());
				Thread.sleep(10000);
			}finally {
				lock.writeLock().unlock();
			}
		}catch(Exception e) {
			e.printStackTrace();
		}
	}
}


class MyThreadA extends Thread{
	private Service service;
	
	public MyThreadA(Service service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.write();
	}
}

class MyThreadB extends Thread{
	private Service service;
	
	public MyThreadB(Service service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.write();
	}
}

public class LockTest {
	
	public static void main(String[] args) throws InterruptedException {
		Service service=new Service();
		MyThreadA a=new MyThreadA(service);
		a.setName("A");
		MyThreadB b=new MyThreadB(service);
		b.setName("B");
		a.start();
		b.start();
	}

}

  

运行结果:

获取写锁B 1575611458260
获取写锁A 1575611468273

  

结果显示写锁的效果是同一时间只允许一个线程执行lock()后面的代码

 

三、ReentrantReadWriteLock读写互斥

import java.util.concurrent.locks.ReentrantReadWriteLock;

class Service{
	private ReentrantReadWriteLock lock=new ReentrantReadWriteLock();
	
	public void read() {
		try {
			try {
				lock.readLock().lock();
				System.out.println("获取读锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis());
				Thread.sleep(10000);
			}finally {
				lock.readLock().unlock();
			}
		}catch(Exception e) {
			e.printStackTrace();
		}
	}
	
	public void write() {
		try {
			try {
				lock.writeLock().lock();
				System.out.println("获取写锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis());
				Thread.sleep(10000);
			}finally {
				lock.writeLock().unlock();
			}
		}catch(Exception e) {
			e.printStackTrace();
		}
	}
}


class MyThreadA extends Thread{
	private Service service;
	
	public MyThreadA(Service service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.read();
	}
}

class MyThreadB extends Thread{
	private Service service;
	
	public MyThreadB(Service service) {
		this.service=service;
	}
	
	@Override
	public void run() {
		service.write();
	}
}

public class LockTest {
	
	public static void main(String[] args) throws InterruptedException {
		Service service=new Service();
		MyThreadA a=new MyThreadA(service);
		a.setName("A");
		MyThreadB b=new MyThreadB(service);
		b.setName("B");
		a.start();	
		b.start();
	}

}

  

运行结果:

获取读锁A 1575611689661
获取写锁B 1575611699665

  

从读写的时间上可以看出读写的操作时互斥的

 

你可能感兴趣的:(Java——多线程之Lock锁)