Spark SQL 两表关联

import org.apache.spark.sql.SQLContext
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{SparkContext, SparkConf}

//define case class for user
case class User(userID: String, gender: String, age: Int,
                                registerDate: String,role: String, region: String)
//define case class for consuming data
case class Order(orderID: String, orderDate: String, productID: Int, price: Int, userID: String)

object UserConsumingDataStatistics {
 def main(args: Array[String]) {
 if (args.length < 1) {
 println("Usage:UserConsumingDataStatistics userDataFilePath consumingDataFilePath")
 System.exit(1)
 }
 val conf = new SparkConf().setAppName("Spark Exercise:User Consuming Data Statistics")
 //Kryo serializer is more quickly by default java serializer
 conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
 val ctx = new SparkContext(conf)
 val sqlCtx = new SQLContext(ctx)
 import sqlCtx.implicits._
 //Convert user data RDD to a DataFrame and register it as a temp table
 val userDF = ctx.textFile(args(0)).map(_.split(" ")).map(
                          u => User(u(0), u(1), u(2).toInt,u(3),u(4),u(5))).toDF()
 userDF.registerTempTable("user")
 //Convert consuming data RDD to a DataFrame and register it as a temp table
 val orderDF = ctx.textFile(args(1)).map(_.split(" ")).map(o => Order(
                                        o(0), o(1), o(2).toInt,o(3).toInt,o(4))).toDF()
 orderDF.registerTempTable("orders")
 //cache the DF in memory with serializer should make the program run much faster
 userDF.persist(StorageLevel.MEMORY_ONLY_SER)
 orderDF.persist(StorageLevel.MEMORY_ONLY_SER)

 //The number of people who have orders in the year 2015
 val count = orderDF.filter(orderDF("orderDate").contains("2015")).join(
                               userDF, orderDF("userID").equalTo(userDF("userID"))).count()
 println("The number of people who have orders in the year 2015:" + count)
 //total orders produced in the year 2014
 val countOfOrders2014 = sqlCtx.sql("SELECT * FROM orders where
                                     orderDate like '2014%'").count()
 println("total orders produced in the year 2014:" + countOfOrders2014)
 //Orders that are produced by user with ID 1 information overview
 val countOfOrdersForUser1 = sqlCtx.sql("SELECT o.orderID,o.productID,
                  o.price,u.userID FROM orders o,user u where u.userID =
                                      1 and u.userID = o.userID").show()
 println("Orders produced by user with ID 1 showed.")
 //Calculate the max,min,avg prices for the orders that are producted by user with ID 10
 val orderStatsForUser10 = sqlCtx.sql("SELECT max(o.price) as maxPrice,
                min(o.price) as minPrice,avg(o.price) as avgPrice,u.userID FROM orders o,
                       user u where u.userID = 10 and u.userID = o.userID group by u.userID")
 println("Order statistic result for user with ID 10:")
 orderStatsForUser10.collect().map(order => "Minimum Price=" + order.getAs("minPrice")
 + ";Maximum Price=" + order.getAs("maxPrice")
 + ";Average Price=" + order.getAs("avgPrice")
 ).foreach(result => println(result))
 }
}


转载于:https://www.cnblogs.com/TendToBigData/p/10501346.html

你可能感兴趣的:(Spark SQL 两表关联)