Flume直接到SparkStreaming的两种方式

一般是flume->kafka->SparkStreaming,如果非要从Flume直接将数据输送到SparkStreaming里面有两种方式,如下:

  • 第一种:Push推送的方式

程序如下:

package cn.lijie

import org.apache.log4j.Level
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}

/**
 * User: lijie
 * Date: 2017/8/3
 * Time: 15:19  
  */
object Flume2SparkStreaming01 {

  def myFunc = (it: Iterator[(String, Seq[Int], Option[Int])]) => {
    it.map(x => {
      (x._1, x._2.sum + x._3.getOrElse(0))
    })
  }

  def main(args: Array[String]): Unit = {
    MyLog.setLogLeavel(Level.ERROR)
    val conf = new SparkConf().setAppName("fs01").setMaster("local[2]")
    val sc = new SparkContext(conf)
    val ssc = new StreamingContext(sc, Seconds(10))
    val ds = FlumeUtils.createStream(ssc, "10.1.9.102", 6666)
    sc.setCheckpointDir("C:\\Users\\Administrator\\Desktop\\checkpoint")
    val res = ds.flatMap(x => {
      new String(x.event.getBody.array()).split(" ")
    }).map((_, 1)).updateStateByKey(myFunc, new HashPartitioner(sc.defaultParallelism), true)
    res.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

flume配置如下:

#agent名, source、channel、sink的名称
a1.sources = r1
a1.channels = c1
a1.sinks = k1
#具体定义source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/hadoop/monitor
#具体定义channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 100
#具体定义sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = 10.1.9.102
a1.sinks.k1.port = 6666
#组装source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

启动flume:

/usr/java/flume/bin/flume-ng agent -n a1 -c conf -f /usr/java/flume/mytest/push.properties

结果:

Flume直接到SparkStreaming的两种方式_第1张图片

  • 第二种:Poll拉的方式

但是这种方法必须要引入Spark官方的一个jar包,见官方的文档:点击跳转,将jar下载下来放到flume安装包的lib目录下即可,点击直接下载jar包

程序如下:

package cn.lijie

import java.net.InetSocketAddress
import org.apache.log4j.Level
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}

/**
  * User: lijie
  * Date: 2017/8/3
  * Time: 15:19  
  */
object Flume2SparkStreaming02 {

  def myFunc = (it: Iterator[(String, Seq[Int], Option[Int])]) => {
    it.map(x => {
      (x._1, x._2.sum + x._3.getOrElse(0))
    })
  }

  def main(args: Array[String]): Unit = {
    MyLog.setLogLeavel(Level.WARN)
    val conf = new SparkConf().setAppName("fs01").setMaster("local[2]")
    val sc = new SparkContext(conf)
    val ssc = new StreamingContext(sc, Seconds(10))
    val addrs = Seq(new InetSocketAddress("192.168.80.123", 10086))
    val ds = FlumeUtils.createPollingStream(ssc, addrs, StorageLevel.MEMORY_AND_DISK_2)
    sc.setCheckpointDir("C:\\Users\\Administrator\\Desktop\\checkpointt")
    val res = ds.flatMap(x => {
      new String(x.event.getBody.array()).split(" ")
    }).map((_, 1)).updateStateByKey(myFunc, new HashPartitioner(sc.defaultParallelism), true)
    res.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

启动flume:

#agent名, source、channel、sink的名称
a1.sources = r1
a1.channels = c1
a1.sinks = k1
#具体定义source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/hadoop/monitor
#具体定义channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 100
#具体定义sink
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname = 192.168.80.123
a1.sinks.k1.port = 10086
#组装source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

启动flume:

/usr/java/flume/bin/flume-ng agent -n a1 -c conf -f /usr/java/flume/mytest/push.properties

结果

Flume直接到SparkStreaming的两种方式_第2张图片


公用类:

MyLog类:

package cn.lijie

import org.apache.log4j.{Level, Logger}
import org.apache.spark.Logging

/**
  * User: lijie
  * Date: 2017/8/3
  * Time: 15:36  
  */
object MyLog extends Logging {
  /**
    * 设置日志级别
    *
    * @param level
    */
  def setLogLeavel(level: Level): Unit = {
    val flag = Logger.getRootLogger.getAllAppenders.hasMoreElements
    if (!flag) {
      logInfo("set log level ->" + level)
      Logger.getRootLogger.setLevel(level)
    }
  }
}

Pom文件:


<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>

    <groupId>flume-sparkstreaminggroupId>
    <artifactId>flume-sparkstreamingartifactId>
    <version>1.0-SNAPSHOTversion>

    <properties>
        <maven.compiler.source>1.7maven.compiler.source>
        <maven.compiler.target>1.7maven.compiler.target>
        <encoding>UTF-8encoding>
        <scala.version>2.10.6scala.version>
        <spark.version>1.6.1spark.version>
        <hadoop.version>2.6.4hadoop.version>
    properties>

    <dependencies>
        <dependency>
            <groupId>org.scala-langgroupId>
            <artifactId>scala-libraryartifactId>
            <version>${scala.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-core_2.10artifactId>
            <version>${spark.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-streaming_2.10artifactId>
            <version>${spark.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-streaming-flume_2.10artifactId>
            <version>${spark.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-clientartifactId>
            <version>${hadoop.version}version>
        dependency>

        <dependency>
            <groupId>mysqlgroupId>
            <artifactId>mysql-connector-javaartifactId>
            <version>5.1.38version>
        dependency>
    dependencies>

    <build>
        <sourceDirectory>src/main/scalasourceDirectory>
        <testSourceDirectory>src/test/scalatestSourceDirectory>
        <plugins>
            <plugin>
                <groupId>net.alchim31.mavengroupId>
                <artifactId>scala-maven-pluginartifactId>
                <version>3.2.2version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compilegoal>
                            <goal>testCompilegoal>
                        goals>
                        <configuration>
                            <args>
                                <arg>-dependencyfilearg>
                                <arg>${project.build.directory}/.scala_dependenciesarg>
                            args>
                        configuration>
                    execution>
                executions>
            plugin>

            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-shade-pluginartifactId>
                <version>2.4.3version>
                <executions>
                    <execution>
                        <phase>packagephase>
                        <goals>
                            <goal>shadegoal>
                        goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SFexclude>
                                        <exclude>META-INF/*.DSAexclude>
                                        <exclude>META-INF/*.RSAexclude>
                                    excludes>
                                filter>
                            filters>
                            <transformers>
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>cn.lijie.Flume2SparkStreaming01mainClass>
                                transformer>
                            transformers>
                        configuration>
                    execution>
                executions>
            plugin>
        plugins>
    build>
project>

你可能感兴趣的:(spark)