推荐系统-矩阵分解原理详解

目前推荐系统中用的最多的就是矩阵分解方法,在Netflix Prize推荐系统大赛中取得突出效果。以用户-项目评分矩阵为例,矩阵分解就是预测出评分矩阵中的缺失值,然后根据预测值以某种方式向用户推荐。常见的矩阵分解方法有基本矩阵分解(basic MF),正则化矩阵分解)(Regularized MF),基于概率的矩阵分解(PMF)等。今天以“用户-项目评分矩阵R(N×M)”说明三种分解方式的原理以及应用。

推荐系统-矩阵分解原理详解_第1张图片

  • Basic MF:

    Basic MF是最基础的分解方式,将评分矩阵R分解为用户矩阵U和项目矩阵S, 通过不断的迭代训练使得U和S的乘积越来越接近真实矩阵,矩阵分解过程如图:
    矩阵分解过程

    预测值接近真实值就是使其差最小,这是我们的目标函数,然后采用梯度下降的方式迭代计算U和S,它们收敛时就是分解出来的矩阵。我们用损失函数来表示误差(等价于目标函数):
    损失函数 公式1

    公式1中R_ij是评分矩阵中已打分的值,U_i和S_j相当于未知变量。为求得公式1的最小值,相当于求关于U和S二元函数的最小值(极小值或许更贴切)。通常采用梯度下降的方法:
    梯度下降

    学习速率是学习速率,表示迭代的步长。其值为1.5时,通常以震荡形式接近极值点;若<1迭代单调趋向极值点;若>2围绕极值逐渐发散,不会收敛到极值点。具体取什么值要根据实验经验。


  • Regularized MF

    正则化矩阵分解是Basic MF的优化,解决MF造成的过拟合问题。其不是直接最小化损失函数,而是在损失函数基础上增加规范化因子,将整体作为损失函数。
    Regularized MF

    红线表示正则化因子,在求解U和S时,仍然采用梯度下降法,此时迭代公式变为:(图片截取自相关论文,S和V等价)
    推荐系统-矩阵分解原理详解_第2张图片

    其中, E

    梯度下降结束条件:f(x)的真实值和预测值小于自己设定的阈值(很小的值,之前一直理解为是变量U和V的迭代值差小于阈值就行,弄了一天才懂。)


  • PMF
    基于概率的矩阵分解,在下一篇博文里。

你可能感兴趣的:(机器学习/云计算)