Spark SQL:Hive数据源复杂综合案例实战

一、Hive数据源实战

Spark SQL支持对Hive中存储的数据进行读写。操作Hive中的数据时,必须创建HiveContext,而不是SQLContext。HiveContext继承自SQLContext,但是增加了在Hive元数据库中查找表,以及用HiveQL语法编写SQL的功能。除了sql()方法,HiveContext还提供了hql()方法,从而用Hive语法来编译sql。

使用HiveContext,可以执行Hive的大部分功能,包括创建表、往表里导入数据以及用SQL语句查询表中的数据。查询出来的数据是一个Row数组。

将hive-site.xml拷贝到spark/conf目录下,将mysql connector拷贝到spark/lib目录下

HiveContext sqlContext = new HiveContext(sc);
sqlContext.sql("CREATE TABLE IF NOT EXISTS students (name STRING, age INT)");
sqlContext.sql("LOAD DATA LOCAL INPATH '/usr/local/spark-study/resources/students.txt' INTO TABLE students");
Row[] teenagers = sqlContext.sql("SELECT name, age FROM students WHERE age<=18").collect();
复制代码

二、 将数据保存到表中

Spark SQL还允许将数据保存到Hive表中。调用DataFramesaveAsTable命令,即可将DataFrame中的数据保存到Hive表中。与registerTempTable不同,saveAsTable是会将DataFrame中的数据物化到Hive表中的,而且还会在Hive元数据库中创建表的元数据。

默认情况下,saveAsTable会创建一张Hive Managed Table,也就是说,数据的位置都是由元数据库中的信息控制的。当Managed Table被删除时,表中的数据也会一并被物理删除。

registerTempTable只是注册一个临时的表,只要Spark Application重启或者停止了,那么表就没了。而saveAsTable创建的是物化的表,无论Spark Application重启或者停止,表都会一直存在。

调用HiveContext.table()方法,还可以直接针对Hive中的表,创建一个DataFrame。

案例:查询分数大于80分的学生的完整信息

Git代码链接

你可能感兴趣的:(Spark SQL:Hive数据源复杂综合案例实战)