直方图均衡化的作用是图像增强。
有两个问题比较难懂,一是为什么要选用累积分布函数,二是为什么使用累积分布函数处理后像素值会均匀分布。
第一个问题。均衡化过程中,必须要保证两个条件:①像素无论怎么映射,一定要保证原来的大小关系不变,较亮的区域,依旧是较亮的,较暗依旧暗,只是对比度增大,绝对不能明暗颠倒;②如果是八位图像,那么像素映射函数的值域应在0和255之间的,不能越界。综合以上两个条件,累积分布函数是个好的选择,因为累积分布函数是单调增函数(控制大小关系),并且值域是0到1(控制越界问题),所以直方图均衡化中使用的是累积分布函数。
第二个问题。累积分布函数具有一些好的性质,那么如何运用累积分布函数使得直方图均衡化?比较概率分布函数和累积分布函数,前者的二维图像是参差不齐的,后者是单调递增的。直方图均衡化过程中,映射方法是
![](http://img.e-com-net.com/image/info8/c74871f935b3445998e0b5283251376f.jpg)
其中,n是图像中像素的总和,
是当前灰度级的像素个数,L是图像中可能的灰度级总数。
来看看通过上述公式怎样实现的拉伸。假设有如下图像:
![](http://img.e-com-net.com/image/info8/2025181f7a894c9f9debff5f693782e2.jpg)
得图像的统计信息如下图所示,并根据统计信息完成灰度值映射:
![](http://img.e-com-net.com/image/info8/f1eac077ac4d4520bd577c97501d40e8.jpg)
映射后的图像如下所示:
![](http://img.e-com-net.com/image/info8/1ed170e0198741b2af832615ec8b703a.jpg)
以上就是直方图映射均衡化的步骤,当然还有一些基于此的更优算法,比如Photoshop中的方法,在此就不一一列举了,大同小异。
#include "stdafx.h"
#include
#include
#include
#include
#include
#ifdef _DEBUG
#pragma comment(lib, "opencv_core244d")
#pragma comment(lib, "opencv_highgui244d")
#pragma comment(lib, "opencv_imgproc244d")
#else
#pragma comment(lib, "opencv_core244d")
#pragma comment(lib, "opencv_highgui244d")
#pragma comment(lib, "opencv_imgproc244d")
#endif
#define cvQueryHistValue_1D(hist,idx0) ((float)cvGetReal1D( (hist)->bins, (idx0)))
using namespace std;
#pragma comment(linker, "/subsystem:\"windows\" /entry:\"mainCRTStartup\"")
void FillWhite(IplImage *pImage)
{
cvRectangle(pImage, cvPoint(0, 0), cvPoint(pImage->width, pImage->height), CV_RGB(255, 255, 255), CV_FILLED);
}
CvHistogram* CreateGrayImageHist(IplImage **ppImage)
{
int nHistSize = 256;
float fRange[] = {0, 255};
float *pfRanges[] = {fRange};
CvHistogram *pcvHistogram = cvCreateHist(1, &nHistSize, CV_HIST_ARRAY, pfRanges);
cvCalcHist(ppImage, pcvHistogram);
return pcvHistogram;
}
IplImage* CreateHisogramImage(int nImageWidth, int nScale, int nImageHeight, CvHistogram *pcvHistogram)
{
IplImage *pHistImage = cvCreateImage(cvSize(nImageWidth * nScale, nImageHeight), IPL_DEPTH_8U, 1);
FillWhite(pHistImage);
float fMaxHistValue = 0;
cvGetMinMaxHistValue(pcvHistogram, NULL, &fMaxHistValue, NULL, NULL);
int i;
for(i = 0; i < nImageWidth; i++)
{
float fHistValue = cvQueryHistValue_1D(pcvHistogram, i);
int nRealHeight = cvRound((fHistValue / fMaxHistValue) * nImageHeight);
cvRectangle(pHistImage,
cvPoint(i * nScale, nImageHeight - 1),
cvPoint((i + 1) * nScale - 1, nImageHeight - nRealHeight),
cvScalar(i, 0, 0, 0),
CV_FILLED
);
}
return pHistImage;
}
int main( int argc, char** argv )
{
const char *pstrWindowsSrcTitle = "原图";
const char *pstrWindowsGrayTitle = "灰度图";
const char *pstrWindowsHistTitle = "直方图";
const char *pstrWindowsGrayEqualizeTitle = "灰度图-均衡化后";
const char *pstrWindowsHistEqualizeTitle = "直方图-均衡化后";
IplImage *pSrcImage = cvLoadImage("./images/beauty.png", CV_LOAD_IMAGE_UNCHANGED);
IplImage *pGrayImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 1);
IplImage *pGrayEqualizeImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 1);
cvCvtColor(pSrcImage, pGrayImage, CV_BGR2GRAY);
int nHistImageWidth = 255;
int nHistImageHeight = 150;
int nScale = 2;
CvHistogram *pcvHistogram = CreateGrayImageHist(&pGrayImage);
IplImage *pHistImage = CreateHisogramImage(nHistImageWidth, nScale, nHistImageHeight, pcvHistogram);
cvEqualizeHist(pGrayImage, pGrayEqualizeImage);
CvHistogram *pcvHistogramEqualize = CreateGrayImageHist(&pGrayEqualizeImage);
IplImage *pHistEqualizeImage = CreateHisogramImage(nHistImageWidth, nScale, nHistImageHeight, pcvHistogramEqualize);
cvNamedWindow(pstrWindowsSrcTitle);
cvNamedWindow(pstrWindowsGrayTitle);
cvNamedWindow(pstrWindowsGrayEqualizeTitle);
cvNamedWindow(pstrWindowsHistTitle);
cvNamedWindow(pstrWindowsHistEqualizeTitle);
cvShowImage(pstrWindowsSrcTitle,pSrcImage);
cvShowImage(pstrWindowsGrayTitle,pGrayImage);
cvShowImage(pstrWindowsGrayEqualizeTitle,pGrayEqualizeImage);
cvShowImage(pstrWindowsHistTitle,pHistImage);
cvShowImage(pstrWindowsHistEqualizeTitle,pHistEqualizeImage);
cvWaitKey(0);
cvDestroyWindow(pstrWindowsSrcTitle);
cvDestroyWindow(pstrWindowsGrayTitle);
cvDestroyWindow(pstrWindowsGrayEqualizeTitle);
cvDestroyWindow(pstrWindowsHistTitle);
cvDestroyWindow(pstrWindowsHistEqualizeTitle);
cvReleaseImage(&pSrcImage);
cvReleaseImage(&pGrayImage);
cvReleaseImage(&pGrayEqualizeImage);
cvReleaseImage(&pHistImage);
cvReleaseImage(&pHistEqualizeImage);
return 0;
}
实验结果:
![opencv基础---直方图均衡化(原理equalizeHist)_第1张图片](http://img.e-com-net.com/image/info8/e263ab44c405477eac577db0c7cba1eb.jpg)
本文参考:
http://blog.csdn.net/rushkid02/article/details/9178117
http://blog.csdn.net/zrongh/article/details/7302816 直方图均衡化原理
http://bbs.ednchina.com/BLOG_ARTICLE_219471.HTM 直方图均衡化