- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- 10、 量子神经网络:从理论到实践
安检
量子神经网络PennyLaneQiskit
量子神经网络:从理论到实践1.量子神经网络简介量子神经网络(QuantumNeuralNetworks,QNNs)是量子计算与经典机器学习相
- 深度神经网络课程设计:从理论到实践
Vita Libre
本文还有配套的精品资源,点击获取简介:深度神经网络是深度学习预测的核心技术,本课程设计项目旨在教授学生如何构建和应用深度神经网络进行各种预测任务,包括图像识别和自然语言处理。学生将通过源代码示例学习从网络架构设计、数据预处理到模型训练与评估的完整流程,并掌握深度学习的基本概念、组件及技巧。1.深度神经网络定义和在深度学习预测中的角色深度神经网络(DeepNeuralNetworks,DNNs)是深
- LSTM 论文(Hochreiter & Schmidhuber, 1997)精读(三)
文章:SeppHochreiter,JürgenSchmidhuber;LongShort-TermMemory.NeuralComput1997;9(8):1735–1780.doi:https://doi.org/10.1162/neco.1997.9.8.1735第2节PreviousWork(已有研究),这是论文对以往方法的一个评述,总结了已有递归神经网络在面对时间序列学习、尤其是长时依赖
- 结构方程模型(SEM)高阶应用系列
梦想的初衷~
结构方程生态环境python开发语言结构方程
结构方程模型(StructuralEquationModeling)是分析多变量间因果关系的利器,在众多学科领域具有巨大应用潜力。我们前期推出的《基于R语言结构方程模型》通过结构方程原理介绍、结构方程全局和局域估计、模型构建和调整、潜变量分析、复合变量分析及结构方程贝叶斯方法实现等一系列专题的介绍及大量案例讲解,由浅入深地系统介绍了结构方程模型的建立、拟合、评估、筛选和结果展示全过程,得到学员广泛
- SAGA——Textural Features(纹理特征)提取
竹_猗
SAGAGIS
由于课题需要(其实是条件有限),不得不使用SAGA软件进行特征提取,在经过一个星期的摸索之后,终于得到了一些成果,在此记录一下提取的过程。在第一篇的文章中已经简单介绍了SAGAGIS的相关概念以及如何使用SAGAGIS加载影像和进行分割。TexturalFeatures提取过程:(1)将影像的各个波段分别导出为单独影像(这一步是由于我是在服务器上进行,所以需要导出,软件上没有必要将每个波段都导出为
- AI技术通过多模态应用(即融合文本、图像、语音、视频、传感器数据等多维度信息)正在深刻重塑工作模式、行业生态和人类创造力边界。
zzywxc787
人工智能音视频大数据javaspring开发语言
AI技术通过多模态应用(即融合文本、图像、语音、视频、传感器数据等多维度信息)正在深刻重塑工作模式、行业生态和人类创造力边界。以下从技术融合、行业变革、职业重构三个维度展开分析,并附具体案例:一、技术融合:多模态AI的核心突破跨模态理解引擎案例:Meta的AudiovisualNeuralNetwork(AV-Wav2Vec)实现语音-唇形-场景的联合建模,语音识别错误率降低40%技术指标:跨模态
- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- 面向对象与面向过程程序设计语言:核心概念、对比分析与应用指南
咸鱼_要_翻身
C++CPython开发语言
目录一、面向过程程序设计语言(ProceduralProgramming)1、基本概念2、主要特点3、代表语言4、典型示例(C语言)5、优势6、局限性二、面向对象程序设计语言(Object-OrientedProgramming)1、基本概念2、四大核心特性3、代表语言4、典型示例(Java)5、优势6、局限性三、主要区别对比四、实际应用选择建议五、现代语言趋势一、面向过程程序设计语言(Proce
- 基于迁移学习的多视图卷积神经网络在乳腺超声自动分类中的应用
despacito,
论文精读-乳腺超声分类
BREASTCANCERCLASSIFICATIONINAUTOMATEDBREASTULTRASOUNDUSINGMULTIVIEWCONVOLUTIONALNEURALNETWORKWITHTRANSFERLEARNINGYIWANG,*,1EUNJUNGCHOI,y,1YOUNHEECHOI,*HAOZHANG,*GONGYONGJIN,yandSEOK-BUMKO*TAGGEDEND*De
- star31.6k,Aider:让代码编写如虎添翼的终端神器
ider是一款运行在终端中的AI结对编程工具,它能与大型语言模型(LLM)无缝协作,直接在您的本地Git仓库中编辑代码。无论是启动新项目,还是优化现有代码库,Aider都能成为您最得力的助手。它支持Claude3.5Sonnet、DeepSeekV3、GPT-4o等顶级AI模型,几乎可以连接任何LLM,让编程体验如虎添翼。Stars数35,188Forks数3,230主要特点Git操作:Aider
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- Apple SoC 图像 ISP 与 Neural Engine 联合优化案例分析:性能与质量平衡的实战经验
观熵
影像技术全景图谱:架构调优与实战接口隔离原则影像Camera
AppleSoC图像ISP与NeuralEngine联合优化案例分析:性能与质量平衡的实战经验关键词:AppleSoC、ISP优化、NeuralEngine协同、图像处理性能、DeepFusion、SmartHDR、实时推理、多核异构计算、功耗管理摘要:随着图像计算复杂度的不断提升,AppleSoC中的ISP与NeuralEngine(NE)联合优化成为提升拍照性能和图像质量的关键路径。本文结合最
- GeoServer图像发布快速入门指南
余桢钟
GeoServer图像发布快速入门指南geoserverOfficialGeoServerrepository项目地址:https://gitcode.com/gh_mirrors/ge/geoserver前言GeoServer作为一款开源的地理空间数据服务器,能够高效地发布和管理各种地理空间数据。本教程将详细介绍如何使用GeoServer发布World+Image格式的栅格数据,以Natural
- 《ONNX推理部署全解析:从基础到进阶的实用指南》
空云风语
人工智能深度学习神经网络人工智能深度学习神经网络YOLOONNX
ONNX基础入门ONNX是什么ONNX,即OpenNeuralNetworkExchange(开放神经网络交换),是一种用于表示深度学习模型的开放标准文件格式。它由Facebook和Microsoft在2017年联合开发,后来得到了NVIDIA、Intel、AWS、Google、OpenAI等众多公司的支持,旨在解决不同深度学习框架之间模型格式不兼容的问题,为模型的存储、交换和部署提供统一标准,使
- NLTK库全解析:用Python打开自然语言处理的第一把钥匙
引言你是否好奇过,手机里的智能助手是如何“听懂”你说的话?电商平台的差评分析又是怎样精准提取“物流慢”“质量差”这些关键词?这些看似神奇的自然语言处理(NLP)功能,背后都藏着一个“入门神器”——NLTK(NaturalLanguageToolkit)。作为Python生态中最经典的NLP库,NLTK就像一本“NLP百科全书”,从最基础的文本拆分到复杂的语义理解,它用简单的代码接口,带我们推开自然
- Random Erasing:计算机视觉的「隐形斗篷」——遮挡艺术的对抗学习革命
星光银河
深度学习-代表性技术主题/概念层面计算机视觉学习人工智能cnn神经网络深度学习
当ImageNet冠军模型在真实世界的遮挡面前崩溃时(识别准确率骤降38%),中科院自动化研究所2017年提出的RandomErasing技术以一纸惊艳了学界。这种在图像中随机挖洞的简单操作,让ResNet-50在Partial-iNaturalist数据集上抗遮挡能力提升4.2倍,错误率降低59%,揭示了模型鲁棒性的深层密码。️遮挡困境:视觉模型的阿喀琉斯之踵图像识别鲁棒性演化史时代技术Imag
- 什么是神经网络架构搜索(NAS, Neural Architecture Search),如何写对应的python程序代码呢
小桥流水---人工智能
算法深度学习Python程序代码神经网络架构python
一、什么是神经网络架构搜索(NAS,NeuralArchitectureSearch)神经网络架构搜索(NAS,NeuralArchitectureSearch)是一种用于自动化设计神经网络架构的技术。传统的神经网络模型架构设计通常依赖于专家经验和大量试错,而NAS通过算法自动搜索网络架构,以发现最适合特定任务的神经网络设计。NAS可以极大地减少人工调参的时间和精力,并且在某些情况下能够找到比手工
- 循环神经网络(RNN):序列数据处理的强大工具
LNL13
rnn人工智能深度学习
在人工智能和机器学习的广阔领域中,处理和理解序列数据一直是一个重要且具有挑战性的任务。循环神经网络(RecurrentNeuralNetwork,RNN)作为一类专门设计用于处理序列数据的神经网络,在诸多领域展现出了强大的能力。从自然语言处理中的文本生成、机器翻译,到时间序列分析中的股票价格预测、天气预测等,RNN都发挥着关键作用。本文将深入探讨RNN的工作原理、架构特点、训练方法、常见类型以及其
- GNN多任务预测模型实现(二):将EXCEL数据转换为图数据
走的远一些
神经网络知识分享知识备份人工智能深度学习
目录一.引言二.加载和检查数据三.提取特征和标签四.标准化特征五.构建节点索引六.构建边及其特征七.总结八.结语一.引言在图神经网络(GraphNeuralNetworks,GNNs)的多任务学习场景中,数据预处理是至关重要的一步。尤其是当我们的数据存储在表格格式(如Excel文件)中时,如何有效地将其转换为图数据格式,是搭建GNN模型的基础。二.加载和检查数据第一步是加载数据并检查其格式。我们通
- 顶会新方向!14篇图神经网络(GNN)最新顶会论文汇总!(含2024)
AI科研技术派
神经网络人工智能深度学习
图神经网络(GNN)是深度学习领域中备受关注的前沿课题,它在处理图结构数据方面展现出了强大的潜力,随着研究的不断深入,越来越多的优秀论文在顶级学术会议上涌现。今天就给大家整理了14篇顶会中发表的图神经网络优质论文,一起看看这方面的最新研究成果吧!AAAI20241、Fine-tuningGraphNeuralNetworksbyPreservingGraphGenerativePatterns通过
- (转载)Box2D v2.3.0 用户手册中文版(第1章)-导言
Chapter1导言1.1关于Box2D是一个用于游戏的2D刚体仿真库。程序员可以在他们的游戏里使用它,它可以使物体的运动更加真实,并让游戏世界看起来更具交互性。从游戏引擎的视角来看,物理引擎就是一个程序性动画(proceduralanimation)的系统。(译注:做动画常有两种方法,一种是预先准备好动画所需的数据,比如图片,再一帧一帧地播放。另一种是以一定方法,动态计算出动画所需的数据,根据数
- 细粒度IP定位参文27(HGNN):Identifying user geolocation(2022年)
[27]F.Zhou,T.Wang,T.Zhong,andG.Trajcevski,“Identifyingusergeolocationwithhierarchicalgraphneuralnetworksandexplainablefusion,”Inf.Fusion,vol.81,pp.1–13,2022.(用层次图、神经网络和可解释的融合来识别用户的地理定位)论文地址:https://do
- 文本lint工具:textlint全面指南
包椒浩Leith
文本lint工具:textlint全面指南textlintThepluggablenaturallanguagelinterfortextandmarkdown.项目地址:https://gitcode.com/gh_mirrors/te/textlint项目介绍textlint是一款可插拔的文本和Markdown语法检查工具,专为JavaScript编写,旨在解决自然语言文本校对的难题。与专注于
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- SOTA是什么意思?
有奇妙能力吗
AI知识分享自然语言处理人工智能ai
最近看到一篇关于Transformer模型的论文,谷歌推出的BERT模型在11项NLP(naturallanguageprocessing)任务中夺得SOTA结果,引爆了整个NLP界。而Transformer是BERT取得成功的一个关键因素。谷歌的Transformer模型最早用于机器翻译任务,当时达到了SOTA效果。那么文中的SOTA效果,SOTA结果是什么意思呢?这里就来简单介绍一下定义:SO
- 用Rust编写的开源支付解决方案——Hyperswitch
Hyperswitch是一家全球支付转换公司,旨在简化和优化企业的支付操作。它提供了一个统一的平台来管理各种支付处理器之间的交易,包括Adyen、Braintree、PayPal、Worldpay、Fiserv、Stripe、Authorize.net和Checkout。Stars数21,111Forks数3,514主要特点单一API集成:通过统一的API连接多个支付处理器,无需进行多次集成操作智
- yolov11细节图
有人给我介绍对象吗
AI论文写作YOLOpython开发语言
C3kclassC3k(C3):"""C3kisaCSPbottleneckmodulewithcustomizablekernelsizesforfeatureextractioninneuralnetworks."""def__init__(self,c1,c2,n=
- 三分钟使用github的技巧
小白学CS
安装/使用教程运维githubgit
文章目录一、GitHub搜索技巧——找开发者二、GitHub搜索技巧——找项目三、in关键字限制搜索范围四、stars或fork数量去查找一、GitHub搜索技巧——找开发者搜索条件备注location:location:china,匹配用户填写的地址在chinalanguage:language:javascript,匹配开发语言为javascript的开发者followers:follower
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。