树形dp 总结(转)

转自 :http://blog.csdn.net/txl199106/article/details/45373507

树状动态规划定义
之所以这样命名树规,是因为树形DP的这一特殊性:没有环,dfs是不会重复,而且具有明显而又严格的层数关系。利用这一特性,我们可以很清晰地根据题目写出一个在树(型结构)上的记忆化搜索的程序。而深搜的特点,就是“不撞南墙不回头”。这一点在之后的文章中会详细的介绍。
首先是扫盲,介绍几条名词的专业解释以显示我的高端(大部分人可以略过,因为学习到树规的人一下应该都懂……):
动态规划:
  问题可以分解成若干相互联系的阶段,在每一个阶段都要做出决策,全部过程的决策是一个决策序列。要使整个活动的总体效果达到最优的问题,称为多阶段决策问题。动态规划就是解决多阶段决策最优化问题的一种思想方法。
阶段:
  将所给问题的过程,按时间或空间(树归中是空间,即层数)特征分解成若干相互联系的阶段,以便按次序去求每阶段的解。
状态:
  各阶段开始时的客观条件叫做状态。
决策:
  当各段的状态取定以后,就可以做出不同的决定,从而确定下一阶段的状态,这种决定称为决策。 (即孩子节点和父亲节点的关系)
策略:
  由开始到终点的全过程中,由每段决策组成的决策序列称为全过程策略,简称策略。
状态转移方程:
  前一阶段的终点就是后一阶段的起点,前一阶段的决策选择导出了后一阶段的状态,这种关系描述了由k阶段到k+1阶段(在树中是孩子节点和父亲节点)状态的演变规律,称为状态转移方程。
目标函数与最优化概念:
  目标函数是衡量多阶段决策过程优劣的准则。最优化概念是在一定条件下找到一个途径,经过按题目具体性质所确定的运算以后,使全过程的总效益达到最优。
树的特点与性质:
1、 有n个点,n-1条边的无向图,任意两顶点间可达
2、 无向图中任意两个点间有且只有一条路
3、 一个点至多有一个前趋,但可以有多个后继
4、 无向图中没有环;
废话说完了,下面是正文:
拿到一道树规题,我们有以下3个步骤需要执行:
判断是否是一道树规题:
即判断数据结构是否是一棵树,然后是否符合动态规划的要求。如果是,那么执行以下步骤,如果不是,那么换台。
建树:通过数据量和题目要求,选择合适的树的存储方式。
如果节点数小于5000,那么我们可以用邻接矩阵存储,如果更大可以用邻接表来存储(注意边要开到2*n,因为是双向的。这是血与泪的教训)。如果是二叉树或者是需要多叉转二叉,那么我们可以用两个一维数组brother[],child[]来存储(这一点下面会仔细数的)。
写出树规方程:通过观察孩子和父亲之间的关系建立方程。我们通常认为,树形DP的写法有两种:
a.根到叶子: 不过这种动态规划在实际的问题中运用的不多。本文只有最后一题提到。
b.叶子到根: 既根的子节点传递有用的信息给根,完后根得出最优解的过程。这类的习题比较的多。

你可能感兴趣的:(dp,树形dp)