numpy.mean()关于axis的理解

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=

>>> a = np.arange(30).reshape(2,3,5)
>>> a
array([[[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14]],

       [[15, 16, 17, 18, 19],
        [20, 21, 22, 23, 24],
        [25, 26, 27, 28, 29]]])
>>> np.mean(a,(0,1))   #分别沿axis=0, axis=1的轴分别运算平均,剩下的shape 为axis=2的维度(5,)
array([12.5, 13.5, 14.5, 15.5, 16.5])
>>> np.mean(a,1)  #沿axis=1的轴分别运算平均,剩下的shape 为(axis=0,axis=2)的维度(2,5)
array([[ 5.,  6.,  7.,  8.,  9.],
       [20., 21., 22., 23., 24.]])
>>> np.mean(a,0)    #沿axis=0的轴分别运算平均,剩下的shape 为(axis=1,axis=2)的维度(3,5)
array([[ 7.5,  8.5,  9.5, 10.5, 11.5],
       [12.5, 13.5, 14.5, 15.5, 16.5],
       [17.5, 18.5, 19.5, 20.5, 21.5]])
>>> np.mean(a,2)    #沿axis=2的轴分别运算平均,剩下的shape 为(axis=0,axis=1)的维度(2,3)
array([[ 2.,  7., 12.],
       [17., 22., 27.]])
>>> np.mean(a,(0,2)) #分别沿axis=0,axis=2的轴分别运算平均,剩下的shape 为(axis=1,)的维度(3,)
array([ 9.5, 14.5, 19.5])
>>> 

 

 

你可能感兴趣的:(numpy.mean()关于axis的理解)