- 道路交通标志检测数据集-智能地图与导航 交通监控与执法 智慧城市交通管理-2,000 张图像
cver123
数据集智慧城市人工智能目标跟踪计算机视觉目标检测
道路交通标志检测数据集已发布目标检测数据集合集(持续更新)道路交通标志检测数据集介绍数据集概览包含类别应用场景数据样本展示YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参数详解常用可选参数典型输出指标4.
- DAY 10 机器学习建模与评估
心落薄荷糖
Python训练营机器学习人工智能
知识点:1.数据集的划分2.机器学习模型建模的三行代码3.机器学习模型分类问题的评估今日代码比较多,但是难度不大,仔细看看示例代码,好好理解下这几个评估指标。作业:尝试对心脏病数据集采用机器学习模型建模和评估#一、导入库importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。impor
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- Python爬虫实战:用Tushare和Baostock爬取股票历史数据及K线图与技术指标计算
在金融数据分析和量化交易中,股票历史数据的获取是进行技术分析、回测和策略研究的第一步。传统上,投资者需要依赖付费数据服务,然而如今,借助Python强大的爬虫工具和开源数据接口,我们能够轻松地爬取免费的历史股票数据,并结合K线图与技术指标来进行深入分析。Tushare和Baostock是两个非常流行的开源金融数据接口。Tushare提供了丰富的国内外金融数据,特别是A股市场的历史数据和实时数据,而
- 什么是 QueryGPT?智能查询工具如何重塑信息检索的未来?
镜舟科技
StarRocksQueryGPT数据查询数据分析多模态交互
从客户行为数据到供应链信息,从市场趋势到内部运营指标,这些数据蕴含着巨大的商业价值。然而,数据量的激增也带来了前所未有的检索挑战:如何在海量信息中快速定位所需数据?如何确保查询结果的准确性和时效性?据统计,75%的企业正受困于低效的查询工具,这已成为阻碍企业数字化转型的关键痛点。传统的数据查询方式主要依赖SQL语句或特定的查询语言,这要求用户具备专业的编程知识和对数据结构的深入理解。即使对于数据分
- 2025 最新 【中兴通讯】投资价值分析报告
AI天才研究院
计算ai价值投资
2025.3.28最新【中兴通讯】投资价值分析报告文章目录2025.3.28最新【中兴通讯】投资价值分析报告摘要一、公司概况与行业背景1.1公司基本架构1.2战略升级路径1.3行业发展趋势通信设备市场格局(2024年)技术迭代周期二、核心竞争力分析2.1技术壁垒2.2市场优势2.3供应链能力三、财务深度解析3.1关键指标趋势(单位:亿元)3.2资产负债表亮点3.3现金流质量四、风险与机遇评估4.1
- 程序化交易系统中如何精准获取MACD、KDJ、BOLL等基础指标的值?
股票程序化交易接口
量化交易股票API接口Python股票量化交易程序化交易系统macd指标kdj指标boll指标股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>基础指标在程序化交易系统中的重要性基础指标对交易决策的指导意义MACD、KDJ、BOLL等基础指标在程序化交易系统中扮演着重要角色。MACD可以帮助判断市场的趋势和买卖信号,通过分析其快线和慢线的交叉情况,能为投资者提供入场和出场的参
- 【第15章】亿级电商平台订单系统-高可用架构设计
cherry5230
亿级流量架构设计与落地系统架构分布式架构中间件
1-1本章导学课程概述核心内容:订单系统高可用架构设计项目背景:年交易额200亿的B2B电商平台订单系统本章学习路径高可用概念解析设计原则学习七大架构设计方法论项目实战应用一、高可用核心概念定义与价值解析系统可靠性标准指标二、设计原则体系冗余设计故障自动转移服务降级策略监控预警机制三、七大高可用设计方法论<
- DPDK技术原理与架构
Linux服务器开发
C++后台开发C++开发DPDKDPDKDPDK原理网络协议VPP虚拟化
本文参考“《中国电信DPDK技术白皮书v1.0》”,DPDK技术框架可以划分为DPDK基本技术与DPDK优化技术两部分,前者指标准的DPDK数据平面开发包和I/O转发实现技术,后者是在DPDK应用过程中,为进一步提高各类用户应用程序的转发性能。中国电信DPDK技术白皮书v1.0DPDK基础—认识DPDK技术DPDK架构高清版DPDK编程指南(中文版)技术原理与架构由于采用软件转发和软件交换技术,单
- 软件架构评估:关键方法与实战指南
你一身傲骨怎能输
架构设计架构
文章摘要架构评估是软件工程中确保系统满足业务目标和非功能需求的关键环节。常见方法包括:ATAM(架构权衡分析):围绕质量属性(性能、安全等)进行场景化评估,适合复杂系统清单检查法:标准化检查表快速评估架构各维度专家评审:多角色头脑风暴发现设计盲点量化评估:通过测试验证性能等可量化指标评估流程通常分为准备、评估、输出三阶段,需多角色参与,关注典型场景分析。评估报告应包含优缺点、风险和改进建议,并跟踪
- MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码算法matlab神经网络大数据人工智能深度学习机器学习
目录MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)1项目背景介绍...1项目目标与意义...2项目挑战...3项目特点与创新...5<
- DeepSeek:开启教育测评智能化新时代
奔跑吧邓邓子
DeepSeek实战DeepSeek教育测评应用
目录一、引言二、DeepSeek技术概述2.1DeepSeek的发展历程与特点2.2工作原理与技术架构三、测评试题智能生成3.1生成原理与技术实现3.2生成试题的类型与应用场景3.3优势与面临的挑战四、学生学习评价报告4.1评价指标体系与数据来源4.2DeepSeek生成评价报告的流程与方法4.3评价报告的特点与应用价值五、教育测评系统优化5.1DeepSeek对教育测评系统的优化作用5.2实际案
- 高中成绩可视化平台开发笔记
一半不眠次日si记
笔记pyqtnumpypandasmatplotlibui数据可视化
高中成绩可视化平台(1)一、项目概述本系统是一个基于PyQt5和Matplotlib的高中成绩数据可视化分析平台,旨在帮助教师快速了解学生成绩分布、班级对比、学科表现等关键指标。平台支持文科与理科的数据切换,并提供多个维度的图表展示和交互式操作。核心功能:文科/理科数据动态切换四个核心分析页面(总览、学科分析、班级分析、排名分析)图表联动刷新机制表格与图表双向绑定自定义样式与视觉美化二、技术选型技
- Git如何查看提交行数与删除行数:统计代码贡献量的完整指南
Git如何查看提交行数与删除行数:统计代码贡献量的完整指南在软件开发中,代码行数统计是衡量团队协作效率和项目进度的重要指标。通过Git的命令行工具,开发者可以轻松查看提交的代码行数、删除的代码行数以及净增行数。本文将详细介绍多种方法,并结合实际案例,帮助你快速掌握这一技能。一、为什么需要统计代码行数?评估工作量:统计个人或团队的代码贡献量,辅助绩效考核。分析代码质量:通过删除行数判断重构频率,评估
- CMake指令:find_package
流星雨爱编程
#CMake工具c++开发语言设计模式自动化编译工具CMake跨平台编译
目录1.简介2.搜索模式3.常用参数4.工作流程5.内置模块示例:FindBoost.cmake6.自定义模块文件(Find.cmake)7.模块模式vs配置模式8.总结相关链接1.简介查找模块(findmodule)是一系列用于搜索第三方依赖软件包(包括库或可执行文件)的模块。对查找模块的引用一般不使用include命令,而是使用find_package命令。基本语法find_package([
- 基于大模型的心力衰竭预测与干预全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录一、引言二、系统概述三、术前阶段(一)患者信息采集与预处理(二)大模型预测心力衰竭风险(三)手术方案制定辅助(四)麻醉方案规划四、术中阶段(一)实时数据监测与传输(二)大模型术中决策支持五、术后阶段(一)术后病情监测与评估(二)并发症风险预测与防控(三)术后护理计划生成六、健康教育与指导(一)个性化教育内容生成(二)康复随访与远程指导七、统计分析与技术验证(一)系统性能评估指标(二)数据分割与
- CloudLens for PolarDB:一键开启数据采集,轻松监控MySQL集群
ivwdcwso
运维与云原生mysqlCloudLensPolarDB数据库性能阿里云安全审计数据库运维
在云数据库运维过程中,日志和性能指标的采集分析至关重要。阿里云提供的CloudLensforPolarDB功能让这一过程变得极为简单,只需几步操作即可实现对PolarDBMySQL集群的全方位监控。本文将详细介绍如何开启和使用这一强大功能,帮助您更好地管理和优化数据库性能。什么是CloudLensforPolarDB?CloudLensforPolarDB是阿里云日志服务(SLS)提供的一站式Po
- 云原生SLO与AIOps的完美结合:智能运维新趋势
AI云原生与云计算技术学院
云原生ai
云原生SLO与AIOps的完美结合:智能运维新趋势关键词:云原生、SLO、AIOps、智能运维、服务等级目标、自动化运维、机器学习摘要:本文深入探讨云原生环境下服务等级目标(SLO)与智能运维(AIOps)的融合实践。通过解析SLO的核心原理与AIOps的技术架构,揭示两者在指标定义、异常检测、自动化修复等环节的协同机制。结合具体算法实现、数学模型分析与项目实战案例,展示如何通过数据驱动的智能运维
- AI重塑IT行业:从效率工具到认知杠杆的人机协同进化之路
AI_DL_CODE
人工智能之深度学习人工智能IT行业变革人机协同AI伦理软件开发网络安全职业转型
摘要:本文系统阐述AI技术对IT行业的革命性影响,揭示其作为"认知杠杆"而非"职业终结者"的本质。通过分析AI在软件开发、网络安全、数据决策等领域的应用实践,量化展示AI对编程效率(代码生成30%-50%)、测试周期(压缩40%)、故障修复时间(MTTR降低75%)等关键指标的提升。同时深入剖析人类在创新设计、伦理判断等维度的不可替代性,构建"AI处理确定性任务+人类主导价值创造"的双螺旋协作模型
- 【机器学习的五大核心步骤】从零构建一个智能系统
目录一、数据处理:一切从“数据”开始✅常见数据源✅关键任务二、特征工程:从“数据”中提取“洞察”✅常用方法✅高阶技巧三、建立模型:从“算法”到“智能”✅模型类型✅常见算法✅模型训练四、评估迭代:没有反馈,就没有智能✅常用评估指标✅迭代优化方法五、上线应用与持续优化:从“实验室”到“真实世界”✅模型部署方式✅持续优化总结:看懂全流程!延伸阅读推荐作者:一叶轻舟|AI应用开发者&技术博主日期:2025
- 内存泄漏系列专题分析之二十四:内存泄漏测试Camera相机进程内存指标分布report概述
一起搞IT吧
内存泄漏和内存占用拆解系列专题数码相机图像处理android
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:这一篇我们开始讲:内存泄漏系列专题分析之二十四:内存泄漏测试Camera相机进程内存指标分布report概述目录一、问题背景二、:内存泄漏测试Camera相机进程内存指标分布report概述2.1:Camera领域相机进程内存指标分布report2.2:Camera领域相机进程内存指标分布2.3:report自定义说明2.4:report
- Oracle19C运维管理,深度总结02
韩公子的Linux大集市
#002-SQL基础篇运维
文章目录一、架构与部署二、备份与恢复(RMAN)三、性能优化四、高可用与容灾五、安全与合规六、自动化运维七、升级与补丁八、故障排查工具箱九、关键监控指标十、最佳实践总结以下是针对Oracle19C运维管理的深度总结,涵盖核心运维场景、最佳实践及关键技术要点:一、架构与部署多租户架构(CDB/PDB)CDB:容器数据库,管理元数据和公共资源。PDB:可插拔数据库,独立业务单元,支持快速克隆、迁移(A
- “易问易视”——让数据分析像聊天一样简单
二十十十十十
数据分析数据挖掘
一、项目简介“易问易视”通过自然语言理解和大语言模型技术,将用户的中文查询自动转化为数据处理指令,实现无代码的数据检索与图表生成。你只要在大屏上输入一句话,比如“2024年每月有多少人出境”,它就能自动看懂你要查的时间、指标、维度,然后在后台用Pandas和NumPy把国家统计局或行业CSV里的数据清洗、筛选、聚合好,再用Matplotlib、Plotly画出柱状图、折线图、饼图甚至地图,最后在S
- AI辅助编程工具技术评估(2025年):CodeBuddy在开发者生态中的差异化优势分析
小猴崽
AI编程人工智能辅助编程AI代码助手AI编程
摘要基于2025年行业数据,全球AI辅助编程工具市场增速超30%,中国开发者渗透率达35%。腾讯云CodeBuddy凭借双模型架构(腾讯混元+DeepSeek)、MCP协议生态及企业级安全设计,在性能、可靠性、成本维度形成差异化优势。本文通过量化指标与横向对比,解析CodeBuddy的技术竞争力与适用场景。1市场背景与CodeBuddy核心定位1.1市场格局用户规模:中国AI编程工具用户达320万
- 玛哈特多辊矫平机:金属板材平整度的精密掌控者
MAHATMA玛哈特
校平机矫平机开平机精密校平机
在现代金属板材加工领域,平整度是衡量产品质量的关键指标。多辊矫平机,凭借其独特的结构和精密的控制能力,已成为矫正金属板材(卷材/单张)内应力、消除波浪弯、镰刀弯等缺陷的核心装备,为汽车、航空航天、家电、精密仪器等行业提供了高质量的板材基础。一、核心原理与结构精髓多辊矫平的核心在于巧妙运用材料的弹塑性变形特性。其工作过程可简述为:反复弯曲与弹复:板材在交错排列的上、下工作辊之间反复弯曲变形。每次弯曲
- 高防IP怎么选
蔡蔡-cai12354cai
ddos服务器网络安全运维经验分享
高防IP选购指南:三大维度锁定安全防护利器在网络攻击手段不断升级的背景下,高防IP成为抵御DDoS、CC攻击的关键防线。但面对市场上琳琅满目的产品,如何精准选择适配的高防IP?需从防护能力、技术架构与服务体系三大核心维度综合考量。首重防护实力:带宽与清洗能力是硬指标高防IP的核心价值在于流量清洗与攻击拦截。需关注其防护带宽是否具备弹性扩容能力,能否应对突发的超大规模攻击。例如,某云服务商的高防IP
- 参数量 vs 计算量:模型轻量化的双面指标,90%的人没理清!
1.参数量(Parameters):模型的知识容量定义:参数量指的是模型在训练过程中需要学习和存储的权重(Weights)和偏置(Biases)的总数量。这些参数是模型从数据中学习到的“知识”的具体数值体现。本质:模型内部存储的状态量。它直接决定了模型文件的大小。计算方式:统计模型中所有可学习参数的数量。全连接层(FC/Dense):参数数量=输入维度*输出维度+输出维度(其中+输出维度是偏置项)
- 金融量化 - 技术分析策略和交易系统_SMA+CCI交易系统
帅泽泽
金融量化金融量化
双技术指标:SMA+CCI交易系统以SMA作为开平仓信号,同时增加CCI作为过滤器;当股价上穿SMA,同时CCI要小于-100,说明是在超卖的情况下,上穿SMA,做多;交易信号更可信;当股价下穿SMA,同时CCI要大于+100,说明是在超买的情况下,下穿SMA,做空;交易信号更可信;importnumpyasnpimportpandasaspdimporttalibastaimporttushar
- 关于结构体,排序,递推的详细讲解(从属于GESP四级)
本章内容排序算法基础结构体递推简单双指针一、排序算法基础三剑客冒泡Bubble、选择Selection、插入Insertion1.预备知识1.1排序算法评价指标指标含义影响答题的典型问法时间复杂度算法在最坏、平均或最好情况下所需比较/交换次数“写出此算法最坏复杂度”空间复杂度额外占用的内存字节数“此算法是否原地排序”稳定性等值元素排序后相对次序是否保持“选择排序稳定吗?为什么”交换/移动次数对不同
- 软件工程领域AI评测:提升软件竞争力的秘诀
软件工程实践
软件工程人工智能ai
软件工程领域AI评测:提升软件竞争力的秘诀关键词:软件工程、AI评测、软件竞争力、评测指标、评测方法摘要:本文聚焦于软件工程领域的AI评测,旨在探讨如何通过有效的AI评测提升软件的竞争力。首先介绍了软件工程领域AI评测的背景,包括目的、预期读者和文档结构等。接着阐述了AI评测的核心概念与联系,分析了其核心算法原理和具体操作步骤,同时给出了相关的数学模型和公式。通过项目实战展示了AI评测在实际中的应
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi