数据结构探险之图篇
#program once
class Node
{
public:
Node(char data = 0);
char m_cData;
bool m_bIsVisited;
};
#include "Node.h"
Node::Node(char data)
{
m_cData = data;
m_bIsVisited = false;
}
#include"Node.h"
#include
using namespace std;
class CMap
{
public:
CMap(int capacity);
~CMap();
bool addNode(Node *pNode);
void resetNode();
bool setValueToMatrixForDirectedGraph(int row, int col, int val = 1);//为有向图设置邻接矩阵
bool setValueToMatrixForUndirectedGraph(int row, int col, int val = 1);//为无向图设置邻接矩阵
void printMatrix();
void depthFirstTraverse(int nodeIndex);//深度优先遍历
void breadthFirstTraverse(int nodeIndex);//广义优先遍历
private:
bool getValueFromMatrix(int row, int col, int &val);//从矩阵中获取权值
void breadthFirstTraverseImpl(vector<int> preVec);//广度优先遍历实现函数
private:
int m_iCapacity;//最多可容纳的顶点数
int m_iNodeCount;//已添加的顶点个数
Node *m_pNodeArray;//存放顶点数组
int *m_pMatrix;//存放邻接矩阵
};
#include "CMap.h"
#include
#include
using namespace std;
CMap::CMap(int capacity)
{
m_iCapacity = capacity;
m_iNodeCount = 0;
m_pNodeArray = new Node[m_iCapacity];
m_pMatrix = new int[m_iCapacity * m_iCapacity];
memset(m_pMatrix, 0, m_iCapacity*m_iCapacity * sizeof(int));
// for (int i = 0; i < m_iCapacity*m_iCapacity; ++i)
// {
// m_pMatrix[i] = 0;
// }
}
CMap::~CMap()
{
delete[]m_pNodeArray;
delete[]m_pMatrix;
}
bool CMap::addNode(Node *pNode)
{
if (pNode == NULL)
{
return false;
}
m_pNodeArray[m_iNodeCount].m_cData = pNode->m_cData;
m_iNodeCount++;
return true;
}
void CMap::resetNode()
{
for (int i = 0; i < m_iNodeCount; ++i)
{
m_pNodeArray[i].m_bIsVisited = false;
}
}
bool CMap::setValueToMatrixForDirectedGraph(int row, int col, int val)
{
if (row < 0 || row >= m_iCapacity)
{
return false;
}
if (col < 0 || col >= m_iCapacity)
{
return false;
}
m_pMatrix[row * m_iCapacity + col] = val;
return true;
}
bool CMap::setValueToMatrixForUndirectedGraph(int row, int col, int val)
{
if (row < 0 || row >= m_iCapacity)
{
return false;
}
if (col < 0 || col >= m_iCapacity)
{
return false;
}
m_pMatrix[row * m_iCapacity + col] = val;
m_pMatrix[col * m_iCapacity + row] = val;
return true;
}
void CMap::printMatrix()
{
for (int i = 0; i < m_iCapacity; ++i)
{
for (int j = 0; j < m_iCapacity; ++j)
{
cout << m_pMatrix[i * m_iCapacity + j] << " ";
}
cout << endl;
}
}
bool CMap::getValueFromMatrix(int row, int col, int &val)
{
if (row < 0 || row >= m_iCapacity)
{
return false;
}
if (col < 0 || col >= m_iCapacity)
{
return false;
}
val = m_pMatrix[row * m_iCapacity + col];
return true;
}
void CMap::depthFirstTraverse(int nodeIndex)
{
int value = 0;
cout << m_pNodeArray[nodeIndex].m_cData << " ";
m_pNodeArray[nodeIndex].m_bIsVisited = true;
//通过邻接矩阵判断是否与其他顶点相连
for (int i = 0; i < m_iCapacity; ++i)
{
getValueFromMatrix(nodeIndex, i, value);
if (value == 1)//判断有弧连接其他顶点
{
//再判断该点是否被访问过
if (m_pNodeArray[i].m_bIsVisited)
{
continue;
}
else
{
depthFirstTraverse(i);
}
}
else
{
continue;
}
}
}
void CMap::breadthFirstTraverse(int nodeIndex)
{
cout << m_pNodeArray[nodeIndex].m_cData << " ";
m_pNodeArray[nodeIndex].m_bIsVisited = true;
vector<int> curVec;
curVec.push_back(nodeIndex);
breadthFirstTraverseImpl(curVec);
}
void CMap::breadthFirstTraverseImpl(vector<int> preVec)
{
int value = 0;
vector<int> curVec;
for (int i = 0; (int)i < preVec.size(); ++i)
{
for (int j = 0; j < m_iCapacity; ++j)
{
getValueFromMatrix(preVec[i], j, value);
if (value != 0)
{
if (m_pNodeArray[j].m_bIsVisited)
{
continue;
}
else
{
cout << m_pNodeArray[j].m_cData << " ";
m_pNodeArray[j].m_bIsVisited = true;
curVec.push_back(j);
}
}
}
}
if (curVec.size() == 0)
{
return;
}
else
{
breadthFirstTraverseImpl(curVec);
}
}
#include
#include
#include "CMap.h"
using namespace std;
/*
A
/ \
B D
/ \ / \
C - F G - H
\ /
E
*/
int main()
{
CMap *pMap = new CMap(8);
Node *pNodeA = new Node('A');
Node *pNodeB = new Node('B');
Node *pNodeC = new Node('C');
Node *pNodeD = new Node('D');
Node *pNodeE = new Node('E');
Node *pNodeF = new Node('F');
Node *pNodeG = new Node('G');
Node *pNodeH = new Node('H');
pMap->addNode(pNodeA);
pMap->addNode(pNodeB);
pMap->addNode(pNodeC);
pMap->addNode(pNodeD);
pMap->addNode(pNodeE);
pMap->addNode(pNodeF);
pMap->addNode(pNodeG);
pMap->addNode(pNodeH);
pMap->setValueToMatrixForUndirectedGraph(0, 1);
pMap->setValueToMatrixForUndirectedGraph(0, 3);
pMap->setValueToMatrixForUndirectedGraph(1, 2);
pMap->setValueToMatrixForUndirectedGraph(1, 5);
pMap->setValueToMatrixForUndirectedGraph(3, 6);
pMap->setValueToMatrixForUndirectedGraph(3, 7);
pMap->setValueToMatrixForUndirectedGraph(6, 7);
pMap->setValueToMatrixForUndirectedGraph(2, 4);
pMap->setValueToMatrixForUndirectedGraph(4, 5);
pMap->printMatrix();
cout << endl;
pMap->depthFirstTraverse(0);
cout << endl;
pMap->resetNode();
pMap->breadthFirstTraverse(0);
cout << endl;
return 0;
}
#program once
class Edge
{
public:
Edge(int nodeIndexA = 0, int nodeIndexB = 0, int weightValue = 0);
int m_iNodeIndexA;
int m_iNodeIndexB;
int m_iWeightValue;
bool m_bSelected;
};
#include "Edge.h"
Edge::Edge(int nodeIndexA, int nodeIndexB, int weightValue)
{
m_iNodeIndexA = nodeIndexA;
m_iNodeIndexB = nodeIndexB;
m_iWeightValue = weightValue;
m_bSelected = false;
}
#program once
class Node
{
public:
Node(char data = 0);
char m_cData;
bool m_bIsVisited;
};
#include "Node.h"
Node::Node(char data)
{
m_cData = data;
m_bIsVisited = false;
}
#include"Node.h"
#include "Edge.h"
#include
using namespace std;
class CMap
{
public:
CMap(int capacity);
~CMap();
bool addNode(Node *pNode);
void resetNode();
bool setValueToMatrixForDirectedGraph(int row, int col, int val = 1);//为有向图设置邻接矩阵
bool setValueToMatrixForUndirectedGraph(int row, int col, int val = 1);//为无向图设置邻接矩阵
void printMatrix();
void depthFirstTraverse(int nodeIndex);//深度优先遍历
void breadthFirstTraverse(int nodeIndex);//广义优先遍历
void primTree(int nodeIndex);//普里姆生成树
private:
bool getValueFromMatrix(int row, int col, int &val);//从矩阵中获取权值
void breadthFirstTraverseImpl(vector<int> preVec);//广度优先遍历实现函数
int getMinEdge(vector<Edge> edgeVec);
private:
int m_iCapacity;//最多可容纳的顶点数
int m_iNodeCount;//已添加的顶点个数
Node *m_pNodeArray;//存放顶点数组
int *m_pMatrix;//存放邻接矩阵
Edge *m_pEdge;
};
#include "CMap.h"
#include
#include
using namespace std;
CMap::CMap(int capacity)
{
m_iCapacity = capacity;
m_iNodeCount = 0;
m_pNodeArray = new Node[m_iCapacity];
m_pMatrix = new int[m_iCapacity * m_iCapacity];
memset(m_pMatrix, 0, m_iCapacity*m_iCapacity * sizeof(int));
// for (int i = 0; i < m_iCapacity*m_iCapacity; ++i)
// {
// m_pMatrix[i] = 0;
// }
m_pEdge = new Edge[m_iCapacity - 1];
}
CMap::~CMap()
{
delete[]m_pNodeArray;
delete[]m_pMatrix;
}
bool CMap::addNode(Node *pNode)
{
if (pNode == NULL)
{
return false;
}
m_pNodeArray[m_iNodeCount].m_cData = pNode->m_cData;
m_iNodeCount++;
return true;
}
void CMap::resetNode()
{
for (int i = 0; i < m_iNodeCount; ++i)
{
m_pNodeArray[i].m_bIsVisited = false;
}
}
bool CMap::setValueToMatrixForDirectedGraph(int row, int col, int val)
{
if (row < 0 || row >= m_iCapacity)
{
return false;
}
if (col < 0 || col >= m_iCapacity)
{
return false;
}
m_pMatrix[row * m_iCapacity + col] = val;
return true;
}
bool CMap::setValueToMatrixForUndirectedGraph(int row, int col, int val)
{
if (row < 0 || row >= m_iCapacity)
{
return false;
}
if (col < 0 || col >= m_iCapacity)
{
return false;
}
m_pMatrix[row * m_iCapacity + col] = val;
m_pMatrix[col * m_iCapacity + row] = val;
return true;
}
void CMap::printMatrix()
{
for (int i = 0; i < m_iCapacity; ++i)
{
for (int j = 0; j < m_iCapacity; ++j)
{
cout << m_pMatrix[i * m_iCapacity + j] << " ";
}
cout << endl;
}
}
bool CMap::getValueFromMatrix(int row, int col, int &val)
{
if (row < 0 || row >= m_iCapacity)
{
return false;
}
if (col < 0 || col >= m_iCapacity)
{
return false;
}
val = m_pMatrix[row * m_iCapacity + col];
return true;
}
void CMap::depthFirstTraverse(int nodeIndex)
{
int value = 0;
cout << m_pNodeArray[nodeIndex].m_cData << " ";
m_pNodeArray[nodeIndex].m_bIsVisited = true;
//通过邻接矩阵判断是否与其他顶点相连
for (int i = 0; i < m_iCapacity; ++i)
{
getValueFromMatrix(nodeIndex, i, value);
if (value == 1)//判断有弧连接其他顶点
{
//再判断该点是否被访问过
if (m_pNodeArray[i].m_bIsVisited)
{
continue;
}
else
{
depthFirstTraverse(i);
}
}
else
{
continue;
}
}
}
void CMap::breadthFirstTraverse(int nodeIndex)
{
cout << m_pNodeArray[nodeIndex].m_cData << " ";
m_pNodeArray[nodeIndex].m_bIsVisited = true;
vector<int> curVec;
curVec.push_back(nodeIndex);
breadthFirstTraverseImpl(curVec);
}
void CMap::breadthFirstTraverseImpl(vector<int> preVec)
{
int value = 0;
vector<int> curVec;
for (int i = 0; (int)i < preVec.size(); ++i)
{
for (int j = 0; j < m_iCapacity; ++j)
{
getValueFromMatrix(preVec[i], j, value);
if (value != 0)
{
if (m_pNodeArray[j].m_bIsVisited)
{
continue;
}
else
{
cout << m_pNodeArray[j].m_cData << " ";
m_pNodeArray[j].m_bIsVisited = true;
curVec.push_back(j);
}
}
}
}
if (curVec.size() == 0)
{
return;
}
else
{
breadthFirstTraverseImpl(curVec);
}
}
void CMap::primTree(int nodeIndex)
{
int value = 0;
int edgeCount = 0;
vector<int> nodeVec;
vector<Edge> edgeVec;
cout << m_pNodeArray[nodeIndex].m_cData << endl;
nodeVec.push_back(nodeIndex);
m_pNodeArray[nodeIndex].m_bIsVisited = true;
while (edgeCount < m_iCapacity - 1)
{
int temp = nodeVec.back();
for (int i = 0; i < m_iCapacity; ++i)
{
getValueFromMatrix(temp, i, value);
if (value != 0)
{
if (m_pNodeArray[i].m_bIsVisited)
{
continue;
}
else
{
Edge edge(temp, i, value);
edgeVec.push_back(edge);
}
}
}
//从可选边集合中找出最小的边
int edgeIndex = getMinEdge(edgeVec);
edgeVec[edgeIndex].m_bSelected = true;
cout << edgeVec[edgeIndex].m_iNodeIndexA << "---" << edgeVec[edgeIndex].m_iNodeIndexB << " ";
cout << edgeVec[edgeIndex].m_iWeightValue << endl;
m_pEdge[edgeCount] = edgeVec[edgeIndex];
edgeCount++;
int nextNodeIndex = edgeVec[edgeIndex].m_iNodeIndexB;
nodeVec.push_back(nextNodeIndex);
m_pNodeArray[nextNodeIndex].m_bIsVisited = true;
cout << m_pNodeArray[nextNodeIndex].m_cData << endl;
}
}
int CMap::getMinEdge(vector<Edge> edgeVec)
{
int minWeight = 0;
int edgeIndex = 0;
int i = 0;
for (; i < edgeVec.size(); ++i)
{
if (!edgeVec[i].m_bSelected)
{
minWeight = edgeVec[i].m_iWeightValue;
edgeIndex = i;
break;
}
}
if (minWeight == 0)
{
return -1;
}
for (; i < edgeVec.size(); ++i)
{
if (edgeVec[i].m_bSelected)
{
continue;
}
else
{
if (minWeight > edgeVec[i].m_iWeightValue)
{
minWeight = edgeVec[i].m_iWeightValue;
edgeIndex = i;
}
}
}
return edgeIndex;
}
#include
#include
#include "CMap.h"
using namespace std;
/*
A
/ \
B D
/ \ / \
C - F G - H
\ /
E
*/
/*算法例子:
A
/ | \
B - F - E
\ / \ /
C - D
权值:
A-B 6 A-E 5 A-F 1
B-C 3 B-F 2
C-F 8 C-D 7
D-F 4 D-E 2
E-F 9
*/
int main()
{
CMap *pMap = new CMap(6);
Node *pNodeA = new Node('A');
Node *pNodeB = new Node('B');
Node *pNodeC = new Node('C');
Node *pNodeD = new Node('D');
Node *pNodeE = new Node('E');
Node *pNodeF = new Node('F');
pMap->addNode(pNodeA);
pMap->addNode(pNodeB);
pMap->addNode(pNodeC);
pMap->addNode(pNodeD);
pMap->addNode(pNodeE);
pMap->addNode(pNodeF);
pMap->setValueToMatrixForUndirectedGraph(0, 1, 6);
pMap->setValueToMatrixForUndirectedGraph(0, 4, 5);
pMap->setValueToMatrixForUndirectedGraph(0, 5, 1);
pMap->setValueToMatrixForUndirectedGraph(1, 2, 3);
pMap->setValueToMatrixForUndirectedGraph(1, 5, 2);
pMap->setValueToMatrixForUndirectedGraph(2, 5, 8);
pMap->setValueToMatrixForUndirectedGraph(2, 3, 7);
pMap->setValueToMatrixForUndirectedGraph(3, 5, 4);
pMap->setValueToMatrixForUndirectedGraph(3, 4, 2);
pMap->setValueToMatrixForUndirectedGraph(4, 5, 9);
pMap->primTree(0);
return 0;
}
#program once
class Node
{
public:
Node(char data = 0);
char m_cData;
bool m_bIsVisited;
};
#include "Node.h"
Node::Node(char data)
{
m_cData = data;
m_bIsVisited = false;
}
#program once
class Edge
{
public:
Edge(int nodeIndexA = 0, int nodeIndexB = 0, int weightValue = 0);
int m_iNodeIndexA;
int m_iNodeIndexB;
int m_iWeightValue;
bool m_bSelected;
};
#include "Edge.h"
Edge::Edge(int nodeIndexA, int nodeIndexB, int weightValue)
{
m_iNodeIndexA = nodeIndexA;
m_iNodeIndexB = nodeIndexB;
m_iWeightValue = weightValue;
m_bSelected = false;
}
#include"Node.h"
#include "Edge.h"
#include
using namespace std;
class CMap
{
public:
CMap(int capacity);
~CMap();
bool addNode(Node *pNode);
void resetNode();
bool setValueToMatrixForDirectedGraph(int row, int col, int val = 1);//为有向图设置邻接矩阵
bool setValueToMatrixForUndirectedGraph(int row, int col, int val = 1);//为无向图设置邻接矩阵
void printMatrix();
void depthFirstTraverse(int nodeIndex);//深度优先遍历
void breadthFirstTraverse(int nodeIndex);//广义优先遍历
void primTree(int nodeIndex);
void kruskalTree();
private:
bool getValueFromMatrix(int row, int col, int &val);//从矩阵中获取权值
void breadthFirstTraverseImpl(vector<int> preVec);//广度优先遍历实现函数
int getMinEdge(vector<Edge> edgeVec);//获取最小边
bool isInSet(vector<int> nodeSet, int target);//判断顶点是否在点集合中
void mergeNodeSet(vector<int> &nodeSetA, vector<int> nodeSetB);//合并两个顶点集合
private:
int m_iCapacity;//最多可容纳的顶点数
int m_iNodeCount;//已添加的顶点个数
Node *m_pNodeArray;//存放顶点数组
int *m_pMatrix;//存放邻接矩阵
Edge *m_pEdge;
};
#include "CMap.h"
#include
#include
using namespace std;
CMap::CMap(int capacity)
{
m_iCapacity = capacity;
m_iNodeCount = 0;
m_pNodeArray = new Node[m_iCapacity];
m_pMatrix = new int[m_iCapacity * m_iCapacity];
memset(m_pMatrix, 0, m_iCapacity*m_iCapacity * sizeof(int));
// for (int i = 0; i < m_iCapacity*m_iCapacity; ++i)
// {
// m_pMatrix[i] = 0;
// }
m_pEdge = new Edge[m_iCapacity - 1];
}
CMap::~CMap()
{
delete[]m_pNodeArray;
delete[]m_pMatrix;
delete[]m_pEdge;
}
bool CMap::addNode(Node *pNode)
{
if (pNode == NULL)
{
return false;
}
m_pNodeArray[m_iNodeCount].m_cData = pNode->m_cData;
m_iNodeCount++;
return true;
}
void CMap::resetNode()
{
for (int i = 0; i < m_iNodeCount; ++i)
{
m_pNodeArray[i].m_bIsVisited = false;
}
}
bool CMap::setValueToMatrixForDirectedGraph(int row, int col, int val)
{
if (row < 0 || row >= m_iCapacity)
{
return false;
}
if (col < 0 || col >= m_iCapacity)
{
return false;
}
m_pMatrix[row * m_iCapacity + col] = val;
return true;
}
bool CMap::setValueToMatrixForUndirectedGraph(int row, int col, int val)
{
if (row < 0 || row >= m_iCapacity)
{
return false;
}
if (col < 0 || col >= m_iCapacity)
{
return false;
}
m_pMatrix[row * m_iCapacity + col] = val;
m_pMatrix[col * m_iCapacity + row] = val;
return true;
}
void CMap::printMatrix()
{
for (int i = 0; i < m_iCapacity; ++i)
{
for (int j = 0; j < m_iCapacity; ++j)
{
cout << m_pMatrix[i * m_iCapacity + j] << " ";
}
cout << endl;
}
}
bool CMap::getValueFromMatrix(int row, int col, int &val)
{
if (row < 0 || row >= m_iCapacity)
{
return false;
}
if (col < 0 || col >= m_iCapacity)
{
return false;
}
val = m_pMatrix[row * m_iCapacity + col];
return true;
}
void CMap::depthFirstTraverse(int nodeIndex)
{
int value = 0;
cout << m_pNodeArray[nodeIndex].m_cData << " ";
m_pNodeArray[nodeIndex].m_bIsVisited = true;
//通过邻接矩阵判断是否与其他顶点相连
for (int i = 0; i < m_iCapacity; ++i)
{
getValueFromMatrix(nodeIndex, i, value);
if (value == 1)//判断有弧连接其他顶点
{
//再判断该点是否被访问过
if (m_pNodeArray[i].m_bIsVisited)
{
continue;
}
else
{
depthFirstTraverse(i);
}
}
else
{
continue;
}
}
}
void CMap::breadthFirstTraverse(int nodeIndex)
{
cout << m_pNodeArray[nodeIndex].m_cData << " ";
m_pNodeArray[nodeIndex].m_bIsVisited = true;
vector<int> curVec;
curVec.push_back(nodeIndex);
breadthFirstTraverseImpl(curVec);
}
void CMap::breadthFirstTraverseImpl(vector<int> preVec)
{
int value = 0;
vector<int> curVec;
for (int i = 0; (int)i < preVec.size(); ++i)
{
for (int j = 0; j < m_iCapacity; ++j)
{
getValueFromMatrix(preVec[i], j, value);
if (value != 0)
{
if (m_pNodeArray[j].m_bIsVisited)
{
continue;
}
else
{
cout << m_pNodeArray[j].m_cData << " ";
m_pNodeArray[j].m_bIsVisited = true;
curVec.push_back(j);
}
}
}
}
if (curVec.size() == 0)
{
return;
}
else
{
breadthFirstTraverseImpl(curVec);
}
}
void CMap::primTree(int nodeIndex)
{
int value = 0;
int edgeCount = 0;
vector<int> nodeVec;
vector<Edge> edgeVec;
cout << m_pNodeArray[nodeIndex].m_cData << endl;
nodeVec.push_back(nodeIndex);
m_pNodeArray[nodeIndex].m_bIsVisited = true;
while (edgeCount < m_iCapacity - 1)
{
int temp = nodeVec.back();
for (int i = 0; i < m_iCapacity; ++i)
{
getValueFromMatrix(temp, i, value);
if (value != 0)
{
if (m_pNodeArray[i].m_bIsVisited)
{
continue;
}
else
{
Edge edge(temp, i, value);
edgeVec.push_back(edge);
}
}
}
//从可选边集合中找出最小的边
int edgeIndex = getMinEdge(edgeVec);
edgeVec[edgeIndex].m_bSelected = true;
cout << edgeVec[edgeIndex].m_iNodeIndexA << "---" << edgeVec[edgeIndex].m_iNodeIndexB << " ";
cout << edgeVec[edgeIndex].m_iWeightValue << endl;
m_pEdge[edgeCount] = edgeVec[edgeIndex];
edgeCount++;
int nextNodeIndex = edgeVec[edgeIndex].m_iNodeIndexB;
nodeVec.push_back(nextNodeIndex);
m_pNodeArray[nextNodeIndex].m_bIsVisited = true;
cout << m_pNodeArray[nextNodeIndex].m_cData << endl;
}
}
int CMap::getMinEdge(vector<Edge> edgeVec)
{
int minWeight = 0;
int edgeIndex = 0;
int i = 0;
for (; i < edgeVec.size(); ++i)
{
if (!edgeVec[i].m_bSelected)
{
minWeight = edgeVec[i].m_iWeightValue;
edgeIndex = i;
break;
}
}
if (minWeight == 0)
{
return -1;
}
for (; i < edgeVec.size(); ++i)
{
if (edgeVec[i].m_bSelected)
{
continue;
}
else
{
if (minWeight > edgeVec[i].m_iWeightValue)
{
minWeight = edgeVec[i].m_iWeightValue;
edgeIndex = i;
}
}
}
return edgeIndex;
}
void CMap::kruskalTree()
{
int value = 0;
int edgeCount = 0;
//定义存放结点集合的数组
vector<vector<int>> nodeSets;
//第一步:取出所有边
vector<Edge> edgeVec;
for (int i = 0; i < m_iCapacity; ++i)
{
for (int j = i + 1; j < m_iCapacity; ++j)
{
getValueFromMatrix(i, j, value);
if (value != 0)
{
Edge edge(i, j, value);
edgeVec.push_back(edge);
}
}
}
//1.找到算法结束条件
while (edgeCount < m_iCapacity - 1)
{
//2.从边集合中找到最小边
int minEdgeIndex = getMinEdge(edgeVec);
edgeVec[minEdgeIndex].m_bSelected = true;
//3.找出最小边连接的点
int nodeAIndex = edgeVec[minEdgeIndex].m_iNodeIndexA;
int nodeBIndex = edgeVec[minEdgeIndex].m_iNodeIndexB;
bool nodeAIsInSet = false;
bool nodeBIsInSet = false;
int nodeAInSetLabel = -1;
int nodeBInSetLabel = -1;
//4.找出点所在的点集合
for (int i = 0; i < nodeSets.size(); ++i)
{
nodeAIsInSet = isInSet(nodeSets[i], nodeAIndex);
if (nodeAIsInSet)
{
nodeAIsInSet = i;
}
}
for (int i = 0; i < nodeSets.size(); ++i)
{
nodeBIsInSet = isInSet(nodeSets[i], nodeBIndex);
if (nodeBIsInSet)
{
nodeBIsInSet = i;
}
}
//5.根据点所在集合的不同做出不同处理
if (nodeAInSetLabel == -1 && nodeBInSetLabel == -1)
{
vector<int> vec;
vec.push_back(nodeAIndex);
vec.push_back(nodeBIndex);
nodeSets.push_back(vec);
}
else if (nodeAInSetLabel == -1 && nodeBInSetLabel != -1)
{
nodeSets[nodeBInSetLabel].push_back(nodeAIndex);
}
else if (nodeAInSetLabel != -1 && nodeBInSetLabel == -1)
{
nodeSets[nodeBInSetLabel].push_back(nodeBIndex);
}
else if (nodeAInSetLabel != -1 && nodeBInSetLabel != -1 && nodeAInSetLabel != nodeBInSetLabel)
{
mergeNodeSet(nodeSets[nodeAInSetLabel], nodeSets[nodeBInSetLabel]);
for (int i = 0; i < (int)nodeSets.size() - 1; ++i)
{
nodeSets[i] = nodeSets[i + 1];
}
}
else if (nodeAInSetLabel != -1 && nodeBInSetLabel != -1 && nodeAInSetLabel == nodeBInSetLabel)
{
continue;
}
m_pEdge[edgeCount] = edgeVec[minEdgeIndex];
edgeCount++;
cout << edgeVec[minEdgeIndex].m_iNodeIndexA << "---" << edgeVec[minEdgeIndex].m_iNodeIndexB << " ";
cout << edgeVec[minEdgeIndex].m_iWeightValue << endl;
}
}
bool CMap::isInSet(vector<int> nodeSet, int target)
{
for (int i = 0; i < nodeSet.size(); ++i)
{
if (nodeSet[i] == target)
{
return true;
}
}
return false;
}
void CMap::mergeNodeSet(vector<int> &nodeSetA, vector<int> nodeSetB)
{
for (int i = 0; i < nodeSetB.size(); ++i)
{
nodeSetA.push_back(nodeSetB[i]);
}
}
#include
#include
#include "CMap.h"
using namespace std;
/*
A
/ \
B D
/ \ / \
C - F G - H
\ /
E
*/
/*算法例子:
A
/ | \
B - F - E
\ / \ /
C - D
权值:
A-B 6 A-E 5 A-F 1
B-C 3 B-F 2
C-F 8 C-D 7
D-F 4 D-E 2
E-F 9
*/
int main()
{
CMap *pMap = new CMap(6);
Node *pNodeA = new Node('A');
Node *pNodeB = new Node('B');
Node *pNodeC = new Node('C');
Node *pNodeD = new Node('D');
Node *pNodeE = new Node('E');
Node *pNodeF = new Node('F');
pMap->addNode(pNodeA);
pMap->addNode(pNodeB);
pMap->addNode(pNodeC);
pMap->addNode(pNodeD);
pMap->addNode(pNodeE);
pMap->addNode(pNodeF);
pMap->setValueToMatrixForUndirectedGraph(0, 1, 6);
pMap->setValueToMatrixForUndirectedGraph(0, 4, 5);
pMap->setValueToMatrixForUndirectedGraph(0, 5, 1);
pMap->setValueToMatrixForUndirectedGraph(1, 2, 3);
pMap->setValueToMatrixForUndirectedGraph(1, 5, 2);
pMap->setValueToMatrixForUndirectedGraph(2, 5, 8);
pMap->setValueToMatrixForUndirectedGraph(2, 3, 7);
pMap->setValueToMatrixForUndirectedGraph(3, 5, 4);
pMap->setValueToMatrixForUndirectedGraph(3, 4, 2);
pMap->setValueToMatrixForUndirectedGraph(4, 5, 9);
// pMap->primTree(0);
pMap->kruskalTree();
return 0;
}