这篇博客主要是利用Titanic dataset来简单演示pyspark 1.6.1的使用方法。
这组数据比较小,训练数据只有891行,训练、测试数据可以在这里下载(train.csv, test.csv)。
当我们运行pyspark之后,SparkContect (sc)就同时运行了。
我们利用sc.textFile读取csv文件,生成的数据格式为RDD。
与此同时,我们也可以使用sqlContext.read.text读取csv文件,但是生成数据格式为DataFrame。
train_path='/Users/chaoranliu/Desktop/github/kaggle/titanic/train.csv'
test_path='/Users/chaoranliu/Desktop/github/kaggle/titanic/test.csv'
# Load csv file as RDD
train_rdd = sc.textFile(train_path)
test_rdd = sc.textFile(test_path)
让我们看看前3行RDD数据:
train_rdd.take(3)
数据的结构是python list, 每一行是一个string。
[u'PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked',
u'1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S',
u'2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C']
Spark DataFrame 是从R data frame 和 python pandas DataFrame 得到的灵感,它是Spark 新的数据格式,在以后版本会取代RDD。它的语法与RDD不同,会更加接近R和pandas. 这里我会把RDD转化为DataFrame,以便后面的数据处理。
步骤:
# Parse RDD to DF
def parseTrain(rdd):
# extract data header (first row)
header = rdd.first()
# remove header
body = rdd.filter(lambda r: r!=header)
def parseRow(row):
# a function to parse each text row into
# data format
# remove double quote, split the text row by comma
row_list = row.replace('"','').split(",")
# convert python list to tuple, which is
# compatible with pyspark data structure
row_tuple = tuple(row_list)
return row_tuple
rdd_parsed = body.map(parseRow)
colnames = header.split(",")
colnames.insert(3,'FirstName')
return rdd_parsed.toDF(colnames)
## Parse Test RDD to DF
def parseTest(rdd):
header = rdd.first()
body = rdd.filter(lambda r: r!=header)
def parseRow(row):
row_list = row.replace('"','').split(",")
row_tuple = tuple(row_list)
return row_tuple
rdd_parsed = body.map(parseRow)
colnames = header.split(",")
colnames.insert(2,'FirstName')
return rdd_parsed.toDF(colnames)
train_df = parseTrain(train_rdd)
test_df = parseTest(test_rdd)
现在让我们看看DataFrame的格式:
train_df.show(3)
+———–+——–+——+———+——————–+——+—+—–+—–+—————-+——-+—–+——–+ |PassengerId|Survived|Pclass|FirstName| Name| Sex|Age|SibSp|Parch| Ticket| Fare|Cabin|Embarked| +———–+——–+——+———+——————–+——+—+—–+—–+—————-+——-+—–+——–+ | 1| 0| 3| Braund| Mr. Owen Harris| male| 22| 1| 0| A/5 21171| 7.25| | S| | 2| 1| 1| Cumings| Mrs. John Bradle…|female| 38| 1| 0| PC 17599|71.2833| C85| C| | 3| 1| 3|Heikkinen| Miss. Laina|female| 26| 0| 0|STON/O2. 3101282| 7.925| | S| +———–+——–+——+———+——————–+——+—+—–+—–+—————-+——-+—–+——–+
合并训练和测试数据,方便后便的数据清理 和 特征提取。
## Add Survived column to test
from pyspark.sql.functions import lit, col
train_df = train_df.withColumn('Mark',lit('train'))
test_df = (test_df.withColumn('Survived',lit(0))
.withColumn('Mark',lit('test')))
test_df = test_df[train_df.columns]
## Append Test data to Train data
df = train_df.unionAll(test_df)
df = (df.withColumn('Age',df['Age'].cast("double"))
.withColumn('SibSp',df['SibSp'].cast("double"))
.withColumn('Parch',df['Parch'].cast("double"))
.withColumn('Fare',df['Fare'].cast("double"))
.withColumn('Survived',df['Survived'].cast("double"))
)
df.printSchema()
可以看到 Age, SibSp, Parch, Fare 四个变量已经转变为数值数据了:
root
|-- PassengerId: string (nullable = true)
|-- Survived: double (nullable = true)
|-- Pclass: string (nullable = true)
|-- FirstName: string (nullable = true)
|-- Name: string (nullable = true)
|-- Sex: string (nullable = true)
|-- Age: double (nullable = true)
|-- SibSp: double (nullable = true)
|-- Parch: double (nullable = true)
|-- Ticket: string (nullable = true)
|-- Fare: double (nullable = true)
|-- Cabin: string (nullable = true)
|-- Embarked: string (nullable = true)
|-- Mark: string (nullable = false)
Age, Fare 有 263, 1 个缺失数据,这里我简单地用平均值用填充。
numVars = ['Survived','Age','SibSp','Parch','Fare']
def countNull(df,var):
return df.where(df[var].isNull()).count()
missing = {var: countNull(df,var) for var in numVars}
age_mean = df.groupBy().mean('Age').first()[0]
fare_mean = df.groupBy().mean('Fare').first()[0]
df = df.na.fill({'Age':age_mean,'Fare':fare_mean})
各个数据的缺失情况:
{'Age': 263, 'Fare': 1, 'Parch': 0, 'SibSp': 0, 'Survived': 0}
这里的主要思想是创建一个 user-defined-function (udf) 应用在Name列,来抓取Title。
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
## created user defined function to extract title
getTitle = udf(lambda name: name.split('.')[0].strip(),StringType())
df = df.withColumn('Title', getTitle(df['Name']))
df.select('Name','Title').show(3)
数据df多一列Title:
+--------------------+-----+
| Name|Title|
+--------------------+-----+
| Mr. Owen Harris| Mr|
| Mrs. John Bradle...| Mrs|
| Miss. Laina| Miss|
+--------------------+-----+
only showing top 3 rows
类别变量通常需要转化数值变量才可以套用一些机器学习的算法。这里我只是简单地利用引索来实现这个功能。例如这样的映射Sex - male => 0, Sex - female =>1。但是这种方法也有它的不足,因为在无形中引进的人为的变量之间数值关联。One-hot-encoding方法可以避免这个不足,但是会大幅增加数据维度(特征数量)
catVars = ['Pclass','Sex','Embarked','Title']
## index Sex variable
from pyspark.ml.feature import StringIndexer
si = StringIndexer(inputCol = 'Sex', outputCol = 'Sex_indexed')
df_indexed = si.fit(df).transform(df).drop('Sex').withColumnRenamed('Sex_indexed','Sex')
## make use of pipeline to index all categorical variables
def indexer(df,col):
si = StringIndexer(inputCol = col, outputCol = col+'_indexed').fit(df)
return si
indexers = [indexer(df,col) for col in catVars]
from pyspark.ml import Pipeline
pipeline = Pipeline(stages = indexers)
df_indexed = pipeline.fit(df).transform(df)
df_indexed.select('Embarked','Embarked_indexed').show(3)
在生成的数据里,Embarked 被映射为 S=>0, C=>1, Q=>2:
+--------+----------------+
|Embarked|Embarked_indexed|
+--------+----------------+
| S| 0.0|
| C| 1.0|
| S| 0.0|
+--------+----------------+
only showing top 3 rows
为了使用ml/mllib算法包,我们需要把特征转变为一个Vector.
catVarsIndexed = [i+'_indexed' for i in catVars]
featuresCol = numVars+catVarsIndexed
featuresCol.remove('Survived')
labelCol = ['Mark','Survived']
from pyspark.sql import Row
from pyspark.mllib.linalg import DenseVector
row = Row('mark','label','features')
df_indexed = df_indexed[labelCol+featuresCol]
# 0-mark, 1-label, 2-features
# map features to DenseVector
lf = (df_indexed.map(lambda r: (row(r[0],r[1],DenseVector(r[2:]))))
.toDF())
# index label
# convert numeric label to categorical, which is required by
# decisionTree and randomForest
lf = (StringIndexer(inputCol = 'label',outputCol='index')
.fit(lf)
.transform(lf))
lf.show(3)
+-----+-----+--------------------+-----+
| mark|label| features|index|
+-----+-----+--------------------+-----+
|train| 0.0|[22.0,1.0,0.0,7.2...| 0.0|
|train| 1.0|[38.0,1.0,0.0,71....| 1.0|
|train| 1.0|[26.0,0.0,0.0,7.9...| 1.0|
+-----+-----+--------------------+-----+
only showing top 3 rows
train = lf.where(lf.mark =='train')
test = lf.where(lf.mark =='test')
# random split further to get train/validate
train,validate = train.randomSplit([0.7,0.3],seed =121)
print 'Train Data Number of Row: '+ str(train.count())
print 'Validate Data Number of Row: '+ str(validate.count())
print 'Test Data Number of Row: '+ str(test.count())
Train Data Number of Row: 636
Validate Data Number of Row: 255
Test Data Number of Row: 418
ml对应的数据格式是DataFrame,而mllib对应的数据格式是RDD。
接下来,我会用逻辑回归,决策树,随机森林来做拟合,并观察它们的模型表现。
from pyspark.ml.classification import LogisticRegression
# regPara: lasso regularisation parameter (L1)
lr = LogisticRegression(maxIter = 100, regParam = 0.05, labelCol='index').fit(train)
# Evaluate model based on auc ROC(default for binary classification)
from pyspark.ml.evaluation import BinaryClassificationEvaluator
def testModel(model, validate = validate):
pred = model.transform(validate)
evaluator = BinaryClassificationEvaluator(labelCol = 'index')
return evaluator.evaluate(prod)
print 'AUC ROC of Logistic Regression model is: '+str(testModel(lr))
AUC ROC of Logistic Regression model is: 0.836952368823
逻辑回归模型的 ROC 0.837 ,接下来我们会与决策树和随机森林作比较。
from pyspark.ml.classification import DecisionTreeClassifier, RandomForestClassifier
dt = DecisionTreeClassifier(maxDepth = 3, labelCol ='index').fit(train)
rf = RandomForestClassifier(numTrees = 100, labelCol = 'index').fit(train)
models = {'LogisticRegression':lr,
'DecistionTree':dt,
'RandomForest':rf}
modelPerf = {k:testModel(v) for k,v in models.iteritems()}
print modelPerf
{'DecistionTree': 0.7700267447784003,
'LogisticRegression': 0.8369523688232298,
'RandomForest': 0.8597809475292919}
在没有模型调测的情况下,随机森林看上去有更好的预测效果。
完整的python代码可以在 这里找到