AUC,KS,ROC

要弄明白ks值和auc值的关系首先要弄懂roc曲线和ks曲线是怎么画出来的。其实从某个角度上来讲ROC曲线和KS曲线是一回事,只是横纵坐标的取法不同而已。拿逻辑回归举例,模型训练完成之后每个样本都会得到一个类概率值(注意是类似的类),把样本按这个类概率值排序后分成10等份,每一份单独计算它的真正率和假正率,然后计算累计概率值,用真正率和假正率的累计做为坐标画出来的就是ROC曲线,用10等分做为横坐标,用真正率和假正率的累计值分别做为纵坐标就得到两个曲线,这就是KS曲线。AUC值就是ROC曲线下放的面积值,而ks值就是ks曲线中两条曲线之间的最大间隔距离。由于ks值能找出模型中差异最大的一个分段,因此适合用于cut_off,像评分卡这种就很适合用ks值来评估。但是ks值只能反映出哪个分段是区分最大的,而不能总体反映出所有分段的效果,因果AUC值更能胜任。

 

ROC 解释:http://baike.baidu.com/link?url=LkE-bbK4TQte-piwGz-WlXsKYmhRAhwpYU29eIS4PLvIJLTeNUibioLug_pmhhDUPNY5SVVtinHqBNqd38o3XdKPWb-36c2FEqEX2Tc002q 

 

 

【详细】ROC和AUC介绍以及如何计算AUC:http://alexkong.net/2013/06/introduction-to-auc-and-roc/

 

转载于:https://www.cnblogs.com/zhangbojiangfeng/p/6728068.html

你可能感兴趣的:(AUC,KS,ROC)