Apache Tez DAG计算应用框架

1. Tez简介

Tez是基于Hadoop Yarn之上的DAG(有向无环图,Directed Acyclic Graph)计算框架。它把Map/Reduce过程拆分成若干个子过程,同时可以把多个Map/Reduce任务组合成一个较大的DAG任务,减少了Map/Reduce之间的文件存储。同时合理组合其子过程,也可以减少任务的运行时间。

2. DAG计算模型

Map/Reduce不能解决所有问题,它适合在分布式环境中处理那些海量数据批处理计算程序,其计算模型主要分为两阶段:第一阶段为Map阶段,输出的是<Key, Value>Pair对;再进行数据的Shuffle和Sort;然进入第二阶段Reduce阶段,在这一阶段就是对对的计算逻辑处理。但是它无法更好地完成要求更高的计算任务,例如图计算中需要BSP迭代计算框架,要把上一个Map/Reduce任务的输出用于下一个Map/Reduce任务的输入;类似Hive和Pig的交互式有向图计算。DAG计算模型是针对Map/Reduce所遇问题而提出来的一种计算模型。下图是Map/Reduce模型与DAG模型的差别。


 

 从图中可以看出:当采用Map/Reduce模型,我们处理一个大任务时需要四个Map/Reduce,那么就需要四个小Job来组合成一个大Job,这样会多几次的输入输出消耗。而采用Tez,它们形成一个大任务,这些子任务组合成一张DAG图,在数据的处理中间过程中,就没有往hdfs里面写数据,而是直接向它的后继节点输出数据。

 

3. Tez框架实现

 在其中一篇技术博客Hadoop Yarn解决多类应用兼容方法讲到在Yarn上如何兼容各类应用的思路。在Hadoop Yarn上实现Hama BSP计算应用博文中讲解了如何在Yarn上开发出一个自己的应用。在这里,我将着重讲解在Tez应用的代码结构上,它是如何实现一个DAG计算模型。

从前面的博文中提到,对每个应用都需要去实现一个YARNRunner类去提交c对应的Job。在Tez里面,有一个这样的类org.apache.tez.mapreduce.YARNRunner。我们将以这个类为入口,讲解Tez的实现过程。

如下是Tez YARNRunner提交任务的实现代码。

@Override
  public JobStatus submitJob(JobID jobId, String jobSubmitDir, Credentials ts)
  throws IOException, InterruptedException {
    //与MR应用一样,先向RM获得一个applicationID。
    ApplicationId appId = resMgrDelegate.getApplicationId();

    FileSystem fs = FileSystem.get(conf);
    // Loads the job.xml written by the user.
    JobConf jobConf = new JobConf(new TezConfiguration(conf));

    // Extract individual raw MR configs.
    //为每个stage创建它自己的conf文件
    Configuration[] stageConfs = MultiStageMRConfToTezTranslator
        .getStageConfs(jobConf);

    // Transform all confs to use Tez keys
    MultiStageMRConfToTezTranslator.translateVertexConfToTez(stageConfs[0],
        null);
    for (int i = 1; i < stageConfs.length; i++) {
      MultiStageMRConfToTezTranslator.translateVertexConfToTez(stageConfs[i],
          stageConfs[i - 1]);
    }

    // create inputs to tezClient.submit()

    // FIXME set up job resources
    Map jobLocalResources =
        createJobLocalResources(stageConfs[0], jobSubmitDir);

    // FIXME createDAG should take the tezConf as a parameter, instead of using
    // MR keys.
    //创建它的一个DAG图
    DAG dag = createDAG(fs, jobId, stageConfs, jobSubmitDir, ts,
        jobLocalResources);

    //略去...,创建一堆与Appmaster相关的conf配置,用于启动Tez的appmaster所用

    // Submit to ResourceManager
    try {
      Path appStagingDir = fs.resolvePath(new Path(jobSubmitDir));
      //向集群提交DAG任务
      dagClient = tezClient.submitDAGApplication(
          appId,
          dag,
          appStagingDir,
          ts,
          jobConf.get(JobContext.QUEUE_NAME,
              YarnConfiguration.DEFAULT_QUEUE_NAME),
          vargs,
          environment,
          jobLocalResources, dagAMConf);

    } catch (TezException e) {
      throw new IOException(e);
    }

    return getJobStatus(jobId);
  }
 上面的代码之中可以看出,它需要为该任务构造一个DAG图。下面是org.apache.tez.mapreduce.YARNRunner.createDAG(FileSystem, JobID, Configuration[], String, Credentials, Map)的源码实现。
private DAG createDAG(FileSystem fs, JobID jobId, Configuration[] stageConfs,
      String jobSubmitDir, Credentials ts,
      Map jobLocalResources) throws IOException {
     //为DAG任务命名
    String jobName = stageConfs[0].get(MRJobConfig.JOB_NAME,
        YarnConfiguration.DEFAULT_APPLICATION_NAME);
    DAG dag = new DAG(jobName);

    LOG.info("Number of stages: " + stageConfs.length);

    TaskLocationHint[] mapInputLocations = getMapLocationHintsFromInputSplits(
        jobId, fs, stageConfs[0], jobSubmitDir);
    TaskLocationHint[] reduceInputLocations = null;
    // 各个子任务subtask的初始化
    Vertex[] vertices = new Vertex[stageConfs.length];   //构造task节点
    for (int i = 0; i < stageConfs.length; i++) {
      vertices[i] = createVertexForStage(stageConfs[i], jobLocalResources,
          i == 0 ? mapInputLocations : reduceInputLocations, i,
          stageConfs.length);
    }

    for (int i = 0; i < vertices.length; i++) {
      dag.addVertex(vertices[i]); //向dag中添加任务节点
      if (i > 0) {
        EdgeProperty edgeProperty = new EdgeProperty(
            ConnectionPattern.BIPARTITE, SourceType.STABLE,
            new OutputDescriptor(OnFileSortedOutput.class.getName(), null),
            new InputDescriptor(ShuffledMergedInput.class.getName(), null));

        Edge edge = null;
        edge = new Edge(vertices[i - 1], vertices[i], edgeProperty);
        dag.addEdge(edge);  //向DAG图中添加边的属性
      }

    }
    return dag;
  }
 大任务的DAG计算信息都存储在Vertex和Edge里面。我们将在这里详细分析Vertex和Edge的关系。
下面是向RM提交的任务信息,用于启动tez appmaster。appmaster的启动类为org.apache.tez.dag.app.DAGAppMaster。
private ApplicationSubmissionContext createApplicationSubmissionContext(
      ApplicationId appId, DAG dag, Path appStagingDir, Credentials ts,
      String amQueueName, String amName, List amArgs,
      Map amEnv, Map amLocalResources,
      TezConfiguration amConf) throws IOException, YarnException {    

     // 省略一些配置参数及方法(conf配置,环境变量classpath参数和appmaster Java命令)...
    // emit protobuf DAG file style
    Path binaryPath =  new Path(appStagingDir,
        TezConfiguration.TEZ_AM_PLAN_PB_BINARY + "." + appId.toString());
    amConf.set(TezConfiguration.TEZ_AM_PLAN_REMOTE_PATH, binaryPath.toUri()
        .toString());

    Configuration finalAMConf = createFinalAMConf(amConf); 

    DAGPlan dagPB = dag.createDag(finalAMConf);  //用dag构建一个DAGPlan作业计划

    FSDataOutputStream dagPBOutBinaryStream = null;
    
    try {
      //binary output
      dagPBOutBinaryStream = FileSystem.create(fs, binaryPath,
          new FsPermission(TEZ_AM_FILE_PERMISSION));
      dagPB.writeTo(dagPBOutBinaryStream); //并且写到硬盘上
    } finally {
      if(dagPBOutBinaryStream != null){
        dagPBOutBinaryStream.close();
      }
    }
    // 省略localResources的配置信息... 
    // Setup ContainerLaunchContext for AM container
    ContainerLaunchContext amContainer =
        ContainerLaunchContext.newInstance(localResources, environment,
            vargsFinal, null, securityTokens, acls);

    // Set up the ApplicationSubmissionContext
    ApplicationSubmissionContext appContext = Records
        .newRecord(ApplicationSubmissionContext.class);

    appContext.setApplicationType(TezConfiguration.TEZ_APPLICATION_TYPE);
    appContext.setApplicationId(appId);
    appContext.setResource(capability);
    appContext.setQueue(amQueueName);
    appContext.setApplicationName(amName);
    appContext.setCancelTokensWhenComplete(conf.getBoolean(
        TezConfiguration.TEZ_AM_CANCEL_DELEGATION_TOKEN,
        TezConfiguration.DEFAULT_TEZ_AM_CANCEL_DELEGATION_TOKEN));
    appContext.setAMContainerSpec(amContainer);

    return appContext;
  }
 
4. Vertex & Edge
<续>
5. MapReduce
<续>
 

你可能感兴趣的:(Hadoop,Yarn,Tez)