PyTorch保存和加载网络结构以及参数【torch.save()、torch.load()】

一、保存方式

对于torch.save()有两种保存方式:
只保存神经网络的训练模型的参数,save的对象是model.state_dict();
既保存整个神经网络的的模型结构又保存模型参数,那么save的对象就是整个模型;

import torch

保存模型步骤

torch.save(model, ‘net.pth’) # 保存整个神经网络的模型结构以及参数
torch.save(model, ‘net.pkl’) # 保存整个神经网络的模型结构以及参数
torch.save(model.state_dict(), ‘net_params.pth’) # 只保存模型参数
torch.save(model.state_dict(), ‘net_params.pkl’) # 只保存模型参数

加载模型步骤

model = torch.load(‘net.pth’) # 加载整个神经网络的模型结构以及参数
model = torch.load(‘net.pkl’) # 加载整个神经网络的模型结构以及参数
model.load_state_dict(torch.load(‘net_params.pth’)) # 仅加载参数
model.load_state_dict(torch.load(‘net_params.pkl’)) # 仅加载参数

上面例子也可以看出若使用torch.save()来进行模型参数的保存,那保存文件的后缀其实没有任何影响,.pkl 文件和 .pth 文件一模一样

二、pkl、pth文件区别

2.1 .pkl文件
首先介绍 .pkl 文件,它若直接打开会显示一堆序列化的东西,以二进制形式存储的。如果去 read 这些文件,需要用’rb’而不是’r’模式。

import pickle as pkl

file = os.path.join(‘annot’,model.pkl) # 打开pkl文件
anno_file = open(file, ‘rb’)
result = pkl.load(anno_file)

2.2 .pth文件
import torch

filename = r’E:\anaconda\model.pth’ # 字符串前面加r,表示的意思是禁止字符串转义
model = torch.load(filename)
print(model)

但其实不管pkl文件还是pth文件,都是以二进制形式存储的,没有本质上的区别,你用pickle这个库去加载pkl文件或pth文件,效果都是一样的。

你可能感兴趣的:(深度学习,神经网络,神经网络,python,深度学习)