- Open-Sora - 为所有人实现高效的视频制作大众化
小众AI
AI开源音视频人工智能AI编程
GitHub:https://github.com/hpcaitech/Open-Sora更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AI这是一款开源的SOTA(State-of-the-Art)视频生成模型,仅用20万美元(224张GPU)就能训练出商业级11B参数的视频生成大模型。它采用Python语言和PyTorch深度学习框架开发,具有生成速度快、资源消
- 【ai】mocap:conda 安装python3.8+ cuda+ pytorch+torchaudio、torchvision
等风来不如迎风去
AI入门与实战人工智能ubuntuconda
MotionCapubuntu18.04不知道为啥会依赖于ffmpeg、xorg渲染?安装pytorch就是会带上cudacudnn啥的pytorch【ai】tx2nx:安装torch、torchvisionforyolov5这里就发现pytorch和torchvision有依赖关系的,还涉及到rapidjson所以python的环境隔离很重要。核心库-cudatoolkit=11.3-pytor
- Pytorch使用手册—扩展 TorchScript 使用自定义 C++ 操作符(专题五十三)
AI专题精讲
Pytorch入门到精通pytorchc++人工智能
提示本教程自PyTorch2.4起已弃用。有关PyTorch自定义操作符的最新指南,请参阅PyTorch自定义操作符。PyTorch1.0版本引入了一种名为TorchScript的新编程模型。TorchScript是Python编程语言的一个子集,可以被TorchScript编译器解析、编译和优化。此外,编译后的TorchScript模型可以选择序列化为磁盘文件格式,随后你可以从纯C++(以及Py
- 部分标签数据集生成与过滤特定标签方法
阳光明媚大男孩
机器学习人工智能
完整代码总结这段代码的目的是通过构建一个部分标签学习(PartialLabelLearning,PLL)框架来生成一个包含部分标签的数据集,并且支持根据给定的标签列表对数据集进行筛选和过滤。代码包含了多个类和函数,主要分为以下几部分:数据预处理与加载:使用PyTorch和torchvision来加载CIFAR-10数据集,并对其进行标准化处理。部分标签数据集的生成:为每个样本生成多个候选标签,并模
- 模型部署实战:PyTorch生产化指南
小诸葛IT课堂
pytorch人工智能python
一、为什么要做模型部署?模型部署是将训练好的模型投入实际应用的关键步骤,涉及:模型格式转换(TorchScript/ONNX)性能优化(量化/剪枝)构建API服务移动端集成本章使用ResNet18实现图像分类,并演示完整部署流程。二、模型转换:TorchScript与ONNX1.准备预训练模型importtorchimporttorchvision#加载预训练模型model=torc
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- PyTorch模型训练实战指南:掌握动态图特性与工业级部署技巧
lmtealily
pytorch人工智能python
前言在深度学习领域,PyTorch凭借其动态计算图、高效的自动微分系统及高度Pythonic的设计哲学,已成为学术界与工业界的主流框架。其即时执行模式大幅简化了模型调试流程,而灵活的模块化设计则为复杂模型的构建提供了坚实基础。然而,从实验原型到工业级部署的全链路实践中,开发者仍需系统性掌握框架核心特性与工程化技巧。本文以实战为导向,深入剖析PyTorch动态图机制与自动微分原理,详解从数据预处理、
- PyTorch 深度学习实战(19):离线强化学习与 Conservative Q-Learning (CQL) 算法
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们探讨了分布式强化学习与IMPALA算法,展示了如何通过并行化训练提升强化学习的效率。本文将聚焦离线强化学习(OfflineRL)这一新兴方向,并实现ConservativeQ-Learning(CQL)算法,利用Minari提供的静态数据集训练安全的强化学习策略。一、离线强化学习与CQL原理1.离线强化学习的特点无需环境交互:直接从预收集的静态数据集学习数据效率高:复用历史经验
- Hugging Face 模型格式全解析:从 PyTorch 到 GGUF
mingo_敏
DeepLearningpytorch人工智能python
HuggingFace模型格式全解析:从PyTorch到GGUFHuggingFace生态支持多种模型格式,以满足不同场景下的存储、部署和推理需求。以下是主流格式的技术解析与演进脉络:1.PyTorch原生格式(.pt/.pth)特性:直接保存PyTorch的state_dict(模型参数)或完整模型(含结构)。兼容性强,与PyTorch训练/推理流程深度集成。文件体积较大,加载速度较慢,存在安全
- LeetCode98-验证二叉搜索树
学习的学习者
LeetCodePython二叉搜索树
上个星期和导师去了华农一趟名义上是和导师去参加一个国家级的项目其实没我啥事都是我导师在那口若悬河当时和那边的本科生去了另一间会议室交流了关于GAN的知识偶然听说大家都在用pytorch好像最新版的也挺好用的反正就是学术界目前主要用这个框架工业界主要用Tensorflow(没办法,Google出品)这两天也拿来瞧了瞧好像也确实可以的!!!98-验证二叉搜索树给定一个二叉树,判断其是否是一个有效的二叉
- 人工智能(AI)系统化学习路线
xiaoyu❅
python人工智能学习
一、为什么需要系统化学习AI?人工智能技术正在重塑各行各业,但许多初学者容易陷入误区:❌盲目跟风:直接学习TensorFlow/PyTorch,忽视数学与算法基础。❌纸上谈兵:只看理论不写代码,无法解决实际问题。❌方向模糊:对CV/NLP/RL等细分领域缺乏认知,难以针对性提升。正确的学习姿势:“金字塔式”分层学习(理论→算法→框架→应用→工程化),逐步构建完整的AI知识体系。二、人工智能学习路线
- 基于PyTorch和ResNet18的花卉识别实战(附完整代码)
意.远
pytorch人工智能python深度学习
一、项目背景与效果花卉分类是计算机视觉的经典任务。本文使用PyTorch框架,基于ResNet18模型实现了102种花卉的分类任务。完整代码可直接复制运行,最终验证集准确率达8.2%,文中同步分析性能瓶颈与优化方案。二、环境配置与数据准备1.环境要求#主要依赖库importtorchfromtorchimportnn,optimfromtorchvisionimporttransforms,dat
- PyTorch 深度学习博客
Zoro|
PyTorchDeepLearning人工智能
PyTorch深度学习博客欢迎来到我的PyTorch深度学习博客!在这里,我将分享使用PyTorch学习和实践深度学习项目的点滴经验。本博客适用于初学者和有一定基础的开发者,旨在帮助大家快速搭建环境、掌握核心概念,并通过实例了解实际应用。环境配置为了确保项目的稳定性和兼容性,我选择了Python3.9环境,并在conda创建的虚拟环境中运行最新且稳定的PyTorch版本2.6.0。1.创建Pyth
- 深入探索 PyTorch 在语音识别中的应用
Zoro|
PyTorchDeepLearning机器学习pytorch语音识别人工智能
深入探索PyTorch在语音识别中的应用在本篇博客中,我将分享如何使用PyTorch进行语音识别任务,重点围绕环境配置、数据预处理、特征提取、模型设计以及模型比较展开。本文基于最近一次机器学习作业(HW2)的任务内容,任务目标是对语音信号进行逐帧音素预测,从而完成多类别分类任务。一、介绍任务背景任务目标:利用深度神经网络对语音信号进行逐帧音素预测。音素定义:音素是语音中能够区分单词的最小语音单位。
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
在深度学习的背景下,NVIDIA的CUDA与AMD的ROCm框架缺乏有效的互操作性,导致基础设施资源利用率显著降低。随着模型规模不断扩大而预算约束日益严格,2-3年更换一次GPU的传统方式已不具可持续性。但是Pytorch的最近几次的更新可以有效利用异构计算集群,实现对所有可用GPU资源的充分调度,不受制于供应商限制。本文将深入探讨如何混合AMD/NVIDIAGPU集群以支持PyTorch分布式训
- 深度学习框架PyTorch——从入门到精通(4)数据转换
Fansv587
Torch框架学习深度学习pytorch人工智能python经验分享
转换(Transforms)很多时候,数据并不总是以训练机器学习算法所需的最终处理形式出现。所以我们需要使用变换对数据进行一些处理,使其适合训练。所有TorchVision数据集都有两个参数——transform来修改特征,target_transform来修改标签——接受包含转换逻辑的可调用项。torchvision.transform模块提供了几个开箱即用的转换。FashionMNIST数据集
- 深度学习框架PyTorch——从入门到精通(5)构建神经网络
Fansv587
Torch框架学习深度学习pytorch神经网络经验分享
构建神经网络获取训练设备定义类模型层nn.Flattennn.Linearnn.ReLUnn.Sequentialnn.Softmax模型参数补充说明argmax神经网络是由一些层或者模块组成的,这些层和模块会对数据进行各种操作。在PyTorch里,torch.nn这个命名空间提供了你搭建自己神经网络所需要的所有基础组件。PyTorch里的每一个模块都是nn.Module类的子类。一个神经网络本身
- pytorch小记(十二):pytorch中 masked_fill_() vs. masked_fill() 详解
墨绿色的摆渡人
pythonpytorch小记pytorch人工智能python
pytorch小记(十二):pytorch中masked_fill_()vs.masked_fill()详解PyTorch`masked_fill_()`vs.`masked_fill()`详解1️⃣`masked_fill()`和`masked_fill_()`的作用2️⃣`masked_fill()`vs.`masked_fill_()`示例3️⃣输出结果4️⃣`masked_fill()`v
- pytorch小记(十):pytorch中torch.tril 和 torch.triu 详解
墨绿色的摆渡人
pythonpytorch小记pytorch人工智能python
pytorch小记(十):pytorch中torch.tril和torch.triu详解PyTorch`torch.tril`和`torch.triu`详解1.`torch.tril`(计算下三角矩阵)作用语法参数示例`diagonal`参数`torch.tril`的应用2.`torch.triu`(计算上三角矩阵)作用语法参数示例`diagonal`参数3.`torch.tril`vs`torc
- Pytorch torch.prod函数介绍
qq_27390023
pytorch人工智能python
torch.prod是PyTorch库中的一个函数,用于计算输入张量中所有元素或者指定维度上元素的乘积。下面将从函数的基本语法、参数、返回值、使用示例几个方面进行详细介绍。基本语法torch.prod(input,dim=None,keepdim=False,dtype=None)参数input:必需参数,是一个输入的PyTorch张量,函数将对这个张量的元素进行乘积计算。dim:可选参数,指定要
- 深度学习框架PyTorch——从入门到精通(5)自动微分
Fansv587
深度学习pytorch人工智能
使用torch.autograd自动微分张量、函数和计算图计算梯度禁用梯度追踪关于计算图的更多信息张量梯度和雅可比乘积在训练神经网络时,最常用的算法是反向传播。在该算法中,参数(模型权重)根据损失函数的梯度相对于给定参数进行调整。为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持为任何计算图自动计算梯度。考虑最简单的一层神经网络,具有输入x、参数w和b以
- 深度学习中的Channel,通道数是什么?
%KT%
深度学习深度学习人工智能
参考文章:直观理解深度学习的卷积操作,超赞!-CSDN博客如何理解卷积神经网络中的通道(channel)_神经网络通道数-CSDN博客深度学习-卷积神经网络—卷积操作详细介绍_深度卷积的作用-CSDN博客正文:在跑深度学习代码的过程中,经常遇到的一个报错是:模型尺寸不匹配的问题。一般pytorch中尺寸/张量的表现方式是:torch.size([16,3,24,24])。这四个参数的含义如下:16
- python,squeeze的详细解释,代码并进行解释
资源存储库
笔记算法python开发语言
目录python,squeeze的详细解释,代码并进行解释Python中的squeeze操作主要作用:PyTorch中的squeeze示例1:去除所有单维度示例2:指定去除维度NumPy中的squeeze示例1:去除所有单维度示例2:指定去除维度何时使用squeeze?总结python,squeeze的详细解释,代码并进行解释Python中的squeeze操作Squeeze是一个用于去除张量或数组
- PyTorch 深度学习实战(12):Actor-Critic 算法与策略优化
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了强化学习的基本概念,并使用深度Q网络(DQN)解决了CartPole问题。本文将深入探讨Actor-Critic算法,这是一种结合了策略梯度(PolicyGradient)和值函数(ValueFunction)的强化学习方法。我们将使用PyTorch实现Actor-Critic算法,并应用于经典的CartPole问题。一、Actor-Critic算法基础Actor-Cri
- PyTorch 深度学习实战(17):Asynchronous Advantage Actor-Critic (A3C) 算法与并行训练
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们深入探讨了SoftActor-Critic(SAC)算法及其在平衡探索与利用方面的优势。本文将介绍强化学习领域的重要里程碑——AsynchronousAdvantageActor-Critic(A3C)算法,并展示如何利用PyTorch实现并行化训练来加速学习过程。一、A3C算法原理A3C算法由DeepMind于2016年提出,通过异步并行的多个智能体(Worker)与环境交互
- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
wlz249
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- llama-factory微调
AI Echoes
深度学习人工智能机器学习deepseek
大模型微调实操--llama-factoryllama-factory环境安装前置准备英伟达显卡驱动更新地址下载NVIDIA官方驱动|NVIDIAcuda下载安装地址CUDAToolkit12.2Downloads|NVIDIADeveloperpytorch下载安装地址PreviousPyTorchVersions|PyTorchllama-factory项目和文档地址https://githu
- TorchServe详解和应用
易之阴阳
机器学习人工智能深度学习pythonTorchserver
TorchServer是PyTorch的一个组件,它是一个轻量级的服务框架,用于部署和管理PyTorch模型,以便在生产环境中提供高效、可扩展的推理服务。TorchServer提供了RESTfulAPI,可以方便地与其他系统集成,支持模型热加载和热更新,确保模型的快速部署和更新。以下是TorchServer的一些关键特性:模型注册和管理:用户可以通过API注册模型,指定模型的路径、输入输出规范和所
- PyTorch 生态概览:为什么选择动态计算图框架?
小诸葛IT课堂
pytorch人工智能python
一、PyTorch的核心价值PyTorch作为深度学习框架的后起之秀,通过动态计算图技术革新了传统的静态图模式。其核心优势体现在:动态灵活性:代码即模型,支持即时调试Python原生支持:无缝衔接Python生态高效的GPU加速:通过CUDA实现透明的硬件加速活跃的社区生态:GitHub贡献者超1.8万人,日均更新100+次二、动态计算图VS静态计算图对比#动态计算图示例(PyTorch)impo
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_