进阶-第17__深度探秘搜索技术_在案例实战中掌握phrase matching搜索技术

 

1、什么是近似匹配

 

两个句子

 

java is my favourite programming language, and I also think spark is a very good big data system.

java spark are very related, because scala is spark's programming language and scala is also based on jvm like java.

 

match query,搜索java spark

 

{

        "match": {

                 "content": "java spark"

        }

}

 

match query,只能搜索到包含java和spark的document,但是不知道java和spark是不是离的很近

 

包含java或包含spark,或包含java和spark的doc,都会被返回回来。我们其实并不知道哪个doc,java和spark距离的比较近。如果我们就是希望搜索java spark,中间不能插入任何其他的字符,那这个时候match去做全文检索,能搞定我们的需求吗?答案是,搞不定。

 

如果我们要尽量让java和spark离的很近的document优先返回,要给它一个更高的relevance score,这就涉及到了proximity match,近似匹配

 

如果说,要实现两个需求:

 

1、java spark,就靠在一起,中间不能插入任何其他字符,就要搜索出来这种doc

2、java spark,但是要求,java和spark两个单词靠的越近,doc的分数越高,排名越靠前

 

要实现上述两个需求,用match做全文检索,是搞不定的,必须得用proximity match,近似匹配

 

phrase match,proximity match:短语匹配,近似匹配

 

这一讲,要学习的是phrase match,就是仅仅搜索出java和spark靠在一起的那些doc,比如有个doc,是java use'd spark,不行。必须是比如java spark are very good friends,是可以搜索出来的。

 

phrase match,就是要去将多个term作为一个短语,一起去搜索,只有包含这个短语的doc才会作为结果返回。不像是match,java spark,java的doc也会返回,spark的doc也会返回。

 

2、match_phrase

Match query 测试(反例)

GET /forum/article/_search

{

  "query": {

    "match": {

      "content": "java spark"

    }

  }

}

结果:

{

  "took": 3,

  "timed_out": false,

  "_shards": {

    "total": 5,

    "successful": 5,

    "failed": 0

  },

  "hits": {

    "total": 2,

    "max_score": 0.68640786,

    "hits": [

      {

        "_index": "forum",

        "_type": "article",

        "_id": "2",

        "_score": 0.68640786,

        "_source": {

          "articleID": "KDKE-B-9947-#kL5",

          "userID": 1,

          "hidden": false,

          "postDate": "2017-01-02",

          "tag": [

            "java"

          ],

          "tag_cnt": 1,

          "view_cnt": 50,

          "title": "this is java blog",

          "content": "i think java is the best programming language",

          "sub_title": "learned a lot of course",

          "author_first_name": "Smith",

          "author_last_name": "Williams"

        }

      },

      {

        "_index": "forum",

        "_type": "article",

        "_id": "5",

        "_score": 0.56008905,

        "_source": {

          "articleID": "DHJK-B-1395-#Ky5",

          "userID": 3,

          "hidden": false,

          "postDate": "2017-03-01",

          "tag": [

            "elasticsearch"

          ],

          "tag_cnt": 1,

          "view_cnt": 10,

          "title": "this is spark blog",

          "content": "spark is best big data solution based on scala ,an programming language similar to java",

          "sub_title": "haha, hello world",

          "author_first_name": "Tonny",

          "author_last_name": "Peter Smith"

        }

      }

    ]

  }

}

 

单单包含java的doc也返回了,不是我们想要的结果

添加测试数据

POST /forum/article/5/_update

{

  "doc": {

    "content": "spark is best big data solution based on scala ,an programming language similar to java spark"

  }

}

 

 

 

将一个doc的content设置为恰巧包含java spark这个短语

 

match_phrase语法

GET /forum/article/_search

{

    "query": {

        "match_phrase": {

            "content": "java spark"//必须包含这个短语,而且顺序必须的是

        }

    }

}

结果:

{

  "took": 1,

  "timed_out": false,

  "_shards": {

    "total": 5,

    "successful": 5,

    "failed": 0

  },

  "hits": {

    "total": 1,

    "max_score": 0.5753642,

    "hits": [

      {

        "_index": "forum",

        "_type": "article",

        "_id": "5",

        "_score": 0.5753642,

        "_source": {

          "articleID": "DHJK-B-1395-#Ky5",

          "userID": 3,

          "hidden": false,

          "postDate": "2017-03-01",

          "tag": [

            "elasticsearch"

          ],

          "tag_cnt": 1,

          "view_cnt": 10,

          "title": "this is spark blog",

          "content": "spark is best big data solution based on scala ,an programming language similar to java spark",

          "sub_title": "haha, hello world",

          "author_first_name": "Tonny",

          "author_last_name": "Peter Smith"

        }

      }

    ]

  }

}

 

成功了,只有包含java spark这个短语的doc才返回了,只包含java的doc不会返回

 

3、term position

hello world, java spark         doc1

hi, spark java                      doc2

解析:

hello             doc1(0)         

wolrd             doc1(1)

java            doc1(2) doc2(2)

spark             doc1(3) doc2(1)

 

了解什么是分词后的position

GET _analyze

{

  "text": "hello world, java spark",

  "analyzer": "standard"

}

结果:

{

  "tokens": [

    {

      "token": "hello",

      "start_offset": 0,

      "end_offset": 5,

      "type": "",

      "position": 0

    },

    {

      "token": "world",

      "start_offset": 6,

      "end_offset": 11,

      "type": "",

      "position": 1

    },

    {

      "token": "java",

      "start_offset": 13,

      "end_offset": 17,

      "type": "",

      "position": 2

    },

    {

      "token": "spark",

      "start_offset": 18,

      "end_offset": 23,

      "type": "",

      "position": 3

    }

  ]

}

 

4、match_phrase的基本原理

 

索引中的position,match_phrase

 

hello world, java spark         doc1

hi, spark java                      doc2

 

hello             doc1(0)         

wolrd             doc1(1)

java            doc1(2) doc2(2)

spark             doc1(3) doc2(1)

 

java spark --> match phrase

 

java spark --> java和spark

 

java --> doc1(2) doc2(2)

spark --> doc1(3) doc2(1)

 

(1)要找到每个term都在的一个共有的那些doc,就是要求一个doc,必须包含每个term,才能拿出来继续计算

 

(2)doc1 --> java和spark --> spark position恰巧比java大1 --> java的position是2,spark的position是3,恰好满足条件

 

doc1符合条件

 

doc2 --> java和spark --> java position是2,spark position是1,spark position比java position小1,而不是大1 --> 光是position就不满足,那么doc2不匹配

 

必须理解这块原理!!!!

 

因为后面的proximity match就是原理跟这个一模一样!!!

你可能感兴趣的:(elasticsearch)