- 用 Python 打造立体数据世界:3D 堆叠条形图绘制全解析
Code_Verse
python科研绘图
在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果——它突破了二维平面的限制,用立体空间展示多维度数据关系,让复杂的数据层级一目了然。今天我们要解锁的「3D堆叠条形图」,就是一种能同时呈现类别、子类别、数值大小的强大可视化工具,特别适合展示具有分层结构的数据。无论是商业报表中的多维度业绩分析,还是科研数据中的多指标对比,它都能让你的数据呈现瞬间高级起来~为什么选择3D堆叠条形图?先聊聊这种图表
- 半导体FAB中的服务器硬件故障监控与预防全方案:从预警到零宕机实战
爱吃青菜的大力水手
服务器运维半导体FAB运维IT运维
服务器硬件故障监控与预防全方案:从预警到零宕机实战关键词:SMART监控RAID预警IPMI传感器性能基线PrometheusZabbix高可用架构一、硬件故障前的7大预警信号(附关联工具)故障类型关键指标监控工具预警阈值磁盘故障Reallocated_Sector_Countsmartctl+smartd>0立即告警Current_Pending_SectorPrometheus+NodeExp
- Istio 深度解析与实战:从原理到应用的全面指南
阿贾克斯的黎明
javaistio网络云原生
目录Istio深度解析与实战:从原理到应用的全面指南一、Istio原理深度剖析1.数据平面2.控制平面二、Istio的安装与部署1.环境准备2.安装Istio3.注入Sidecar三、Istio实战应用场景1.流量管理(1)简单路由(2)流量镜像2.安全防护(1)服务间双向认证(2)基于角色的访问控制(RBAC)3.监控与可观测性(1)启用Prometheus和Grafana(2)查看监控指标四、
- 危急时刻显身手:AORO M6 Pro防爆对讲机的实战智慧
AORO_BEIDOU
人工智能信息与通信5G科技
在工业安全与应急通信领域,设备的技术自主性与智能化水平已成为衡量核心竞争力的关键指标。面对复杂多变的作业环境与日益严苛的安全标准,AOROM6Pro防爆对讲机凭借“纯血国产”的技术底座与“AI赋能”的创新突破,为危化、能源、公共安全等领域提供了兼具安全性与高效能的通信解决方案。这款斩获2024年度AI天马“臻品”殊荣的产品,不仅重新定义了防爆对讲机的技术标杆,更以本土化创新回应了行业对极端场景通信
- Java猜拳小游戏
wp_tao
Java从入门到精通java开发语言
Java猜拳小游戏使用java设计一个猜拳小游戏,要求如下:在控制台提示用户输入出拳结果(1:石头,2:剪刀,3:布)。计算机生成出拳结果。裁判判断出拳结果。输出游戏结果。com.game.Judge.java。packagecom.game;publicclassJudge{privateintplayer1;//选手一的出拳结果:1为石头,2为剪刀,3为布
- 非结构化数据真“野”?聊聊AI处理它时踩过的那些坑
Echo_Wish
Python进阶人工智能
非结构化数据真“野”?聊聊AI处理它时踩过的那些坑在AI圈子里有一句“老话”:真正的世界,是非结构化的。图像、音频、视频、文本、传感器原始数据……这些在数据库里没个字段、没个主键的家伙,占据了全世界80%以上的数据量。咱们都喜欢说“数据是新时代的石油”,但很少人说:非结构化数据,就是粘稠未提炼的原油——处理它,才是最累的活。这篇文章,我不想跟你讲那些“炫技”的论文和模型,而是从一个一线AI工程师的
- Cesium 实战 05 - 标绘编辑功能系列之编辑线段对象(Linestring | Polyline)
非科班Java出身GISer
Cesium实战教程cesium编辑线cesium修改线编辑polylinecesium编辑linecesium修改line修改polylinecesium编辑标绘线
Cesium实战-标绘编辑功能系列之编辑线段对象(Linestring|Polyline)核心代码完整代码在线示例本来想着标绘功能是比较基础的功能,而且网上一搜一堆,就不在教程里放了。后来觉得,标绘也是项目实战中非常常用的,网上虽然教程挺多,但是由于质量参差不齐,版本各不一致。本教程系列还是加上比较合适,主要是在线示例可以更好的帮助到需要的GISer。标绘编辑功能系列包含=编辑点、编辑线、编辑面,
- COLT_CMDB_RocketMQ.sh
小茬粥
rocketmq
#!/bin/bash#IT_BEGIN#IT_TYPE=1#原型指标#ITMIDWARE_ROCKETMQ_HOSTNAME|hostname#ITMIDWARE_ROCKETMQ_IPADDRESS|ip#新增指标安装路径配置文件路径#ITMIDWARE_ROCKETMQ_HOMEPATH|homepath#ITMIDWARE_ROCKETMQ_CONFIGPATH|configpath#IT
- COLT_CMDB_linux_userInfo_20250508.sh修复历史脚本输出指标信息中userName与输出信息不一致问题
#!/bin/bash#IT_BEGIN#IT_TYPE=3#ITSYSTEM_LINUX_AGENTUSERDISCOVER|discovery.user[disc]#原型指标#IT_RULESYSTEM_LINUX_AGENTUSERGROUPID|groupId[{#USERNAME}]#IT_RULESYSTEM_LINUX_AGENTUSERHOME|userHome[{#USERNAM
- 【数字后端】- 什么是NDR规则?
LogicYarn
数字后端硬件架构
NDR是指与工艺库的默认规则(DR)不同的特殊物理规则:常见的有:间距规则(spacing):增加信号线与邻近线之间的距离,降低Crosstalk串扰。线宽规则(width):加宽信号线,降低电阻和电感,提高信号驱动能力金属层指定:指定使用低电阻或低串扰的金属层(如高层金属)端点规则:如加强端点接触等为什么要有NDR?这就要提到金属的EM(电迁移electro-migration)问题。由于电子的
- 变压器励磁电感、励磁电流、漏感、漏感折算的具体意思你懂了吗
变压器的励磁电流与励磁电感原边KVL:线阻的电压+绕组电压+mos管的导通压降等于输入源的电压线阻的电压、mos管的导通压降都很小,为了满足KVL,这里绕组电压就需要维持了一个平衡输出有没有电流,原边绕组都需要有一个反向的电动势输出为空载的时候,副边没有电流,但是副边还是有电压,这个电压的建立是因为励磁电感与励磁电流的存在。不维持绕组电压,输入源短路了,电感没有感抗了。那么为了维持这样个绕组电压而
- 构建全栈式数据库与消息队列服务治理体系:监控、告警与组件搭配实践
喝醉酒的小白
DBAK8s数据库
目录标题分类✅一、分类总览表✅二、详细分类说明1.关系型数据库(RDBMS)2.NoSQL数据库3.分布式系统协调组件4.消息队列系统✅三、按用途分类(实战参考)✅四、开源vs商业(闭源)分类全面的监控指标分类与告警模板清单✅一、通用结构✅二、数据库系统级别详细监控项与告警模板1.MySQL/TiDB/OceanBase2.PostgreSQL/openGauss/GaussDB/KingBase
- Three.js开发必备:几何体BufferGeometry顶点详解
天生我材必有用_吴用
three.jsthreeJS
目录几何体顶点位置数据和点模型对象Points缓冲类型几何体BufferGeometry顶点模型第一步、创建一个空的几何体对象第二步、添加顶点数据第三步、3个为一组,表示一个顶点的xyz坐标第四步、设置几何体顶点属性与点材质第五步、导出点模型第六步、场景中引入添加点模型第七步、查看效果线模型Line渲染顶点数据第一步、设置线材质对象第二步、创建线模型对象第三步、场景中引入添加线模型第四步、查看效果
- 图像检索评价指标:mAP@k、mAP的计算
/home/liupc
11Python/DL/ML
mAP,meanAveragePrecision,平均检索精度.是图像检索领域最最常用的评价指标。一、mAP@k、mAP1.1mAP@k很多地方喜欢用这张图来解释,确实画的很好了,不过略有瑕疵,我稍微修改了一下。这张图是求mAP@10的结果。原图主要存在的问题就是,在前10张图片中,把所有的相似的结果都返回了。这样会给读者造成这样的困扰:没检索出来的但是又相似的图片怎么办??改了之后,就清晰多了。
- 【翻译】多标签分类评价指标metrices multi-label classification
surrender2u
NLP自然语言处理
翻译日期:2020-05-15翻译来源:LohithmunakalaAug28,2020MetricsforMulti-LabelClassification原地址:https://medium.com/analytics-vidhya/metrics-for-multi-label-classification-49cc5aeba1c3删减版本正文:用于多标签分类的最常见指标如下:Precisi
- 排序指标
排序指标MAP(平均准确率指标)AP@K=∑k=1KP(k)∗rel(k)∑kKrel(k)AP@K=\frac{\sum_{k=1}^{K}P(k)*rel(k)}{\sum_{k}^{K}rel(k)}AP@K=∑kKrel(k)∑k=1KP(k)∗rel(k)其中,rel(k)rel(k)rel(k)表示第k个元素是否与查询元素相关,相关为1,不想管为0。P(k)表示前k个结果的准确率。MA
- 数据标注师学习内容汇总
试着
数据标注师学习数据标注师
目录文本标注图像标注语音标注文本标注词性标注1词性标注2实体标注关系标注事件标注1事件标注2意图标注关键词标注分类标注问答标注对话标注图像标注拉框标注关键点标注2D标注3D标注线标注目标跟踪标注OCR标注图像分类标注语音标注语音切割转写语音校对标注拼音和停顿标注
- 庙算兵棋推演AI开发初探(7-神经网络训练与评估概述)
超自然祈祷
智能决策人工智能神经网络深度学习
前面我们提取了特征做了数据集、设计并实现了处理数据集的神经网络,接下来我们需要训练神经网络了,就是把数据对接好灌进去,训练后查看预测的和实际的结果是否一致——也就是训练与评估。数据解析提取数据编码为数据集设计神经网络-->>神经网络训练与评估神经网络一个重要指标是收敛,就是用可以逼近任意函数的神经网络是否可以逼近你数据集中隐含的模式。再重复一遍【特征工程】与【神经网络】的区别:前者就像人发现了牛顿
- 临床试验评价指标解析
qq_34062333
临床试验统计学
一、主要疗效终点1.1生存类终点1.1.1总生存期(OS)定义:随机至全因死亡的时间统计方法:Kaplan-Meier,Cox模型优势/局限:金标准,无测量偏倚;但需大样本长随访1.1.2无进展生存期(PFS)定义:随机至疾病进展/死亡的时间统计方法:同上优势/局限:敏感、不受后续治疗影响;但评估易受主观性干扰1.1.3客观缓解率(ORR)定义:肿瘤缩小≥30%的患者比例(RECIST标准)统计方
- 使用大模型预测心力衰竭的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录1.引言背景与意义目标2.术前风险评估与预测数据采集与预处理风险预测模型输出应用3.术中风险实时监测与预警实时数据流处理动态风险预测4.术后恢复与并发症预测恢复轨迹建模并发症防控5.个性化治疗方案制定6.统计分析与模型验证验证方法性能指标7.健康教育与指导方案8.技术架构与实施路径1.引言背景与意义问题现状:心力衰竭(HF)全球患者超千万,中国25岁以上人群患病率1.1%;传统诊疗漏诊率高,预
- 盲法在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、盲法分级与科学价值1.1开放标签1.1.1受盲对象无隐藏。1.1.2适用场景外科手术、器械试验等无法伪装的操作。1.1.3偏倚控制目标仅客观终点(生存率、实验室指标)。1.2单盲1.2.1受盲对象患者。1.2.2适用场景患者报告结局(PRO)为主的试验(如抑郁症)。1.2.3偏倚控制目标避免患者期望效应影响主观症状报告。1.3双盲1.3.1受盲对象患者+研究者+评估员。1.3.2适用场景药物试
- AIOps 简介与实践初探 - 智能指标异常检测
weixin_42587823
aiopsaiops
AIOps简介与实践初探-智能指标异常检测问题的根源:静态阈值的“告警疲劳”作为SRE,我们每天都在与告警作斗争。而绝大多数告警都来源于静态阈值的设定,例如:CPU使用率>80%磁盘空间500ms这种方式简单直接,但在复杂系统中,它的弊端也日益凸显:告警疲劳(AlertFatigue):为了“宁可错杀,不可放过”,阈值往往设得偏低。结果,在业务高峰期,系统正常地繁忙,告警却响个不停。久而久之,大家
- HCCDA – AI华为云人工智能开发者认证-60道单选题题库及答案_华为人工智能入门级开发者认证题库
2401_89172925
人工智能华为云华为
单选题及答案AI模型的评测指标主要分为精度指标和性能指标,以下哪一项不属于常用的性能指标?A.FPS(FramesPerSecond)B.FLOPs(Floating-pointOperationsPerSecond)C.aPs(QueryPerSecond)D.F1值Mask_Detection技能模板提供了口罩检测技能,针对每个人,若没有检测到人脸,也没有检测到口罩,则会显示什么信息?A.No
- 基于机器学习的人形机器人电池健康状态预测方法
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据机器学习机器人人工智能ai
基于机器学习的人形机器人电池健康状态预测方法:从理论到实践的系统解析关键词电池健康状态(SOH)、剩余使用寿命(RUL)、人形机器人、机器学习、时序数据建模、多模态特征融合、边缘计算部署摘要本报告系统解析基于机器学习的人形机器人电池健康状态预测方法,覆盖从理论框架到工程实现的全链路。首先界定人形机器人场景下电池健康状态的核心指标(SOH/RUL/RC),梳理从电化学模型到数据驱动方法的技术演进;其
- 微调大语言模型(生成任务),怎么评估它到底“变好”了?
茫茫人海一粒沙
语言模型人工智能自然语言处理
随着大语言模型(如GPT、LLaMA)的广泛应用,越来越多团队开始基于它们做微调,定制符合自己业务需求的模型。微调虽能让模型更贴合任务,但评估是否真的“变好”却不是简单的事。本文将系统介绍微调过程中和微调完成后,如何科学有效地评估模型效果,帮助你用对指标,做出准确判断。一、微调时的评估:关注训练过程中的模型表现1.验证集Loss(ValidationLoss)微调训练时,我们会准备一部分数据作为验
- 【向上教育】国企面试手册(OCR).pdf
㏕追忆似水年华あ
人工智能大数据算法旅游c语言
国企各省面试的形式主要是结构化面试,也有少部分单位采用无领导小组讨论的面试形式。全面了解面试形式是考生须知的重要信息之一。一、结构化面试结构化面试,也称标准化面试,是相对于传统的经验型面试而言的,是根据科学制定的评价指标,运用特定的问题、评价方法和评价标准,严格遵循特定程序,通过测评人员与被测试者进行语言交流,对被测试者进行评价的标准化过程。(一)结构化面试之三大规范1.考题规范化(1)测评要素一
- 大模型商用格局雏形初现:Tokens用量决高下,火山引擎问鼎2024
QbitAl
火山引擎人工智能
明敏发自凹非寺量子位|公众号QbitAI大模型应用落地元年,谁家业务更值得关注?Tokens使用量,正在成为最关键的衡量指标。量子位结合市场数据观察,2024下半年国内大模型商用落地日均Tokens消耗量翻了近10倍,从1000亿级规模到10000亿规模,只用了6个月,月复合增长率达到45%。其中,10-12月增长进一步提速。其中,只有1家云厂商商用Tokens日均消耗量的月均复合增长率超过60%
- gsap动画库
请叫我斌哥哥
工具动画
gsap动画库GSAP文档首先导入gsap动画库npmigsap-S安装好了在项目中引用importgsapfrom"gsap"普通的页面使用gsap.to('类名',{动画属性})//我们也可以使用时间线来写动画//创建一个时间线,然后再使用链式语法,做过视频剪辑的同学可能理解的更深vartl=gsap.timeline();tl.to(".box1",{rotation:27,x:100,du
- 嵌入式笔记:常用接口之详解I2C总线
失落的多巴胺
STM32网络单片机
I2C(Inter-IntegratedCircuit)1.简介I2C(也称为IIC)是一种同步、多主、低速的串行通信协议,只需要两根线即可实现设备之间的数据传输,广泛应用于各种嵌入式设备中,这点在下文原理部分会进一步介绍。2.原理与特性1.双线通信I2C总线由两根信号线组成:SCL:即时钟线,由主设备(Master)产生时钟信号,用于同步数据传输。SDA:即数据线,用于主设备与从设备(Slave
- AI原生应用微服务监控:Prometheus+Grafana实战
AI原生应用开发
AI-native微服务prometheusai
AI原生应用微服务监控:Prometheus+Grafana实战关键词:微服务监控、Prometheus、Grafana、AI应用、指标收集、可视化告警、云原生摘要:本文将深入探讨如何为AI原生应用构建完整的微服务监控系统。我们将从基础概念出发,详细介绍Prometheus的指标收集机制和Grafana的可视化能力,并通过实际案例展示如何搭建完整的监控解决方案。文章包含详细的配置示例、架构图解和最
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那