「模拟8.17」star way to heaven(并查集,最小生成树)

80分打法

首先二分最后答案,答案即为r,可看作以每个k为圆心r为半径的圆

我们进行并查集维护,维护相交的圆的边界

最后判断是否存在圆将上下边界覆盖,如有证明不行

 

 1 #include
 2 #include
 3 #include
 4 #include
 5 #include
 6 #include<string>
 7 #include
 8 #include
 9 #include<set>
10 #define min(a,b) a>b?b:a
11 #define max(a,b) a>b?a:b
12 #define int long long 
13 #define MAXN 1000001
14 using namespace std;
15 int fa[MAXN];
16 double l_y[MAXN],r_y[MAXN];
17 int x[MAXN],y[MAXN];
18 int find(int x)
19 {
20      if(fa[x]==x)return fa[x];
21      return fa[x]=find(fa[x]);
22 }
23 bool judge(int xx,int yy,double r)
24 {
25      double deta_x=abs(x[xx]-x[yy]);
26      double deta_y=abs(y[xx]-y[yy]);
27      //printf("deta_x=%lld deta_y=%lld\n",deta_x,deta_y);
28      if((double)deta_x*deta_x+(double)deta_y*deta_y<(2.0*r)*(r*2.0))return 1;
29      return 0;
30 }
31 int n,m,k;
32 bool work(double cir)
33 {
34      for(int i=1;i<=k;++i)fa[i]=i;
35      for(int i=1;i<=k;++i)
36      {
37          l_y[i]=(double)y[i]-cir;r_y[i]=(double)y[i]+cir;
38      }
39      for(int i=1;i<=k;++i)
40      {
41          for(int j=1;j<=k;++j)
42          {
43              //printf("i=%lld j=%lld\n",i,j);
44              int xx=find(i);int yy=find(j);
45              if(xx==yy)continue;
46              if(judge(i,j,cir))
47              {
48                 fa[yy]=xx;
49                 l_y[yy]=l_y[xx]=min(l_y[yy],l_y[xx]);
50                 r_y[yy]=r_y[xx]=max(r_y[yy],r_y[xx]);    
51                 //printf("l_y[%lld]=%.4lf r_y[%lld]=%.4lf\n",xx,l_y[xx],xx,r_y[xx]);            
52              }
53          }
54      }
55      for(int i=1;i<=k;++i)
56      {
57          if(l_y[find(i)]m-cir)
58          {
59              //printf("l_y[%lld]=%.4lf r_y[%lld]=%.4lf\n",find(i),l_y[find(i)],find(i),r_y[find(i)]);            
60              return 0;
61          }
62      }
63      return 1;
64 }
65 void second_divided()
66 {
67      double l=0.0,r=m;
68      while(l+0.0000001<r)
69      {
70            double mid=(l+r)/2;
71            //printf("mid=%.4lf\n",mid);
72            if(work(mid))
73            {
74               l=mid;
75            }
76            else r=mid;
77      }
78      if(work(r))printf("%.6lf\n",r);
79      else printf("%.6lf\n",l);
80 }
81 signed main()
82 {
83      scanf("%lld%lld%lld",&n,&m,&k);
84      for(int i=1;i<=k;++i)scanf("%lld%lld",&x[i],&y[i]);
85      second_divided();
86 }
View Code

 

100分

开始是很难看出这是最小生成树,(听说是什么欧几里得最小生成树,非常神奇)

对于最小生成树有几个性质:(自己瞎写的,可能不对)

1.最小生成树包含两点之间路径的最小边

2.最小生成树生成的边和最小

对于此题,我们尽量选边权小的边,构成最小生成树,

选出从上边界到下边界的最大边权,除二既是答案

最小生成树保证了选出这个边后,其他圆只会离他更远,所以正确

另外学习了prim算法

 1 #include
 2 #include
 3 #include
 4 #include
 5 #include
 6 #include<string>
 7 #include
 8 #include
 9 #include<set>
10 #define min(a,b) a>b?b:a
11 #define max(a,b) a>b?a:b
12 #define int long long 
13 #define MAXN 1000001
14 using namespace std;
15 double disx[MAXN],disy[MAXN];
16 int n,m,k;
17 double d[MAXN];int vis[MAXN];int fa[MAXN];
18 double poww(double x)
19 {
20     return x*x;
21 }
22 struct no{int to,n;double w;}e[MAXN*2];int head[MAXN],tot;
23 void add(int u,int v,double w)
24 {
25      e[++tot].to=v;e[tot].n=head[u];e[tot].w=w;head[u]=tot;
26 }
27 double cal(int x,int y)
28 {
29     if(x>y)swap(x,y);
30     if(x==k+1&&y==k+2)return (double)m;
31     if(y==k+1)return disy[x];
32     if(y==k+2)return (double)m-disy[x];
33     //printf("cal%.4lf\n",sqrt(poww(disx[x]-disx[y])+poww(disy[x]-disy[y])));
34     return sqrt(poww(disx[x]-disx[y])+poww(disy[x]-disy[y]));
35 }
36 void prim()
37 {
38      memset(vis,0,sizeof(vis));
39      for(int i=1;i<=k+2;++i)d[i]=100000000000.0;
40      d[1]=0;
41      for(int i=1;i2;++i)
42      {
43          double minn=100000000000.0;int x=0;
44          for(int j=1;j<=k+2;++j)
45          {
46              if(!vis[j]&&d[j]<minn)
47              {
48                   minn=d[j];x=j;
49              }
50          }
51          vis[x]=1;
52          for(int j=1;j<=k+2;++j)
53          {
54              if(!vis[j])
55              {
56                 double dis=cal(x,j);
57                 if(dis<d[j])
58                 {
59                     d[j]=dis;
60                     fa[j]=x;
61                     //printf("j=%lld x=%lld dis=%.4lf\n",j,x,d[j]);
62                 }
63              }
64          }
65      }
66      for(int i=2;i<=k+2;++i)
67      {
68          add(i,fa[i],d[i]);add(fa[i],i,d[i]);
69          //printf("%lld %lld %.4lf\n",fa[i],i,d[i]);
70      }
71 }
72 double ans=0.0;
73 void DFS(int x,double w,int fa)
74 {
75      if(x==k+2){ans=w;return ;}
76      for(int i=head[x];i;i=e[i].n)
77      {
78          int to=e[i].to;
79          if(to==fa)continue;
80          DFS(to,max(w,e[i].w),x);
81      }
82 }
83 signed main()
84 {
85     scanf("%lld%lld%lld",&n,&m,&k);
86     for(int i=1;i<=k;++i)
87     {
88         scanf("%lf%lf",&disx[i],&disy[i]);
89     }
90     prim();
91     DFS(k+1,0,0);
92     printf("%.7lf\n",ans/2);
93 }
View Code

 

转载于:https://www.cnblogs.com/Wwb123/p/11370472.html

你可能感兴趣的:(「模拟8.17」star way to heaven(并查集,最小生成树))