二叉树遍历及C语言实现

二叉树遍历及C语言实现

已知中序和前序序列,或者已知中序和后序序列,都能够构造一棵二叉树。在本例中,本人用C语言写程序解答了下面两个算法题:

(1)给出一棵二叉树的中序与后序遍历序列,求出它的先序遍历序列。

(2)给出一棵二叉树的中序与先序遍历序列,求出它的后序遍历序列。

知识点扼要回顾:
所谓二叉树的遍历,是指按一定的顺序对二叉树中的每个结点均访问一次,且仅访问一。按照根结点访问位置的不同,通常把二叉树的遍历分为六种:
TLR(根左右), TRL(根右左), LTR(左根右)
RTL(右根左), LRT(左右根), RLT(右左根)

其中,TRL、RTL和RLT三种顺序在左右子树之间均是先右子树后左子树,这与人们先左后右的习惯不同,因此,往往不予采用。余下的三种顺序TLR、LTR和LRT根据根访问的位置不同分别被称为前序遍历、中序遍历和后序遍历。

前序遍历的规律是:输出根结点,输出左子树,输出右子树; 
中序遍历的规律是:输出左子树,输出根结点,输出右子树;
后序遍历的规律是:输出左子树,输出右子树,输出根结点;

不多说了,看代码吧:)

#include #include using namespace std; //存储节点数据,为简便起见,这里选用字符 typedef char DATA_TYPE; typedef struct tagBINARY_TREE_NODE BINARY_TREE_NODE, *LPBINARY_TREE_NODE; struct tagBINARY_TREE_NODE { DATA_TYPE data; //节点数据 LPBINARY_TREE_NODE pLeftChild; //左孩子指针 LPBINARY_TREE_NODE pRightChild; //右孩子指针 }; // //函数名称:TreeFromMidPost //函数功能:给出一棵二叉树的中序与后序序列,构造这棵二叉树。 //输入参数:LPBINARY_TREE_NODE & lpNode:二叉树的结点 // string mid:存储了二叉树的中序序列的字符串 // string post:存储了二叉树的后序序列的字符串 // int lm, int rm:二叉树的中序序列在数组mid中的左右边界 // int lp, int rp:二叉树的后序序列在数组post中的左右边界 // void TreeFromMidPost(LPBINARY_TREE_NODE & lpNode, string mid, string post, int lm, int rm, int lp, int rp) { //构造二叉树结点 lpNode = new BINARY_TREE_NODE; lpNode->data = post[rp]; lpNode->pLeftChild = NULL; lpNode->pRightChild = NULL; int pos = lm; while (mid[pos] != post[rp]) { pos++; } int iLeftChildLen = pos - lm; if (pos > lm)//有左孩子,递归构造左子树 { TreeFromMidPost(lpNode->pLeftChild, mid, post, lm, pos - 1, lp, lp + iLeftChildLen - 1); } if (pos < rm)//有右孩子,递归构造右子树 { TreeFromMidPost(lpNode->pRightChild, mid, post, pos + 1, rm, lp + iLeftChildLen, rp - 1); } } // //函数名称:TreeFromMidPre //函数功能:给出一棵二叉树的先序与中序序列,构造这棵二叉树。 //输入参数: BINARY_TREE_NODE & lpNode:二叉树的结点 // string mid:存储了二叉树的中序序列的字符串 // string pre:存储了二叉树的先序序列的字符串 // int lm, int rm:二叉树的中序序列在数组mid中的左右边界 // int lp, int rp:二叉树的先序序列在数组pre中的左右边界 // void TreeFromMidPre(LPBINARY_TREE_NODE & lpNode, string mid, string pre, int lm, int rm, int lp, int rp) { //构造二叉树结点 lpNode = new BINARY_TREE_NODE; lpNode->data = pre[lp]; lpNode->pLeftChild = NULL; lpNode->pRightChild = NULL; int pos = lm; while (mid[pos] != pre[lp]) { pos++; } int iLeftChildLen = pos - lm; if (pos > lm)//有左孩子,递归构造左子树 { TreeFromMidPre(lpNode->pLeftChild, mid, pre, lm, pos - 1, lp + 1, lp + iLeftChildLen); } if (pos < rm)//有右孩子,递归构造右子树 { TreeFromMidPre(lpNode->pRightChild, mid, pre, pos + 1, rm, lp + iLeftChildLen + 1, rp); } } //先序遍历 void PreOrder(LPBINARY_TREE_NODE p) { if(p != NULL) { cout << p->data; //输出该结点 PreOrder(p->pLeftChild); //遍历左子树 PreOrder(p->pRightChild); //遍历右子树 } } //中序遍历 void MidOrder(LPBINARY_TREE_NODE p) { if(p != NULL) { MidOrder(p->pLeftChild); //遍历左子树 cout << p->data; //输出该结点 MidOrder(p->pRightChild); //遍历右子树 } } //后序遍历 void PostOrder(LPBINARY_TREE_NODE p) { if(p != NULL) { PostOrder(p->pLeftChild); //遍历左子树 PostOrder(p->pRightChild); //遍历右子树 cout << p->data; //输出该结点 } } //释放二叉树 void Release(LPBINARY_TREE_NODE lpNode) { if(lpNode != NULL) { Release(lpNode->pLeftChild); Release(lpNode->pRightChild); delete lpNode; lpNode = NULL; } } int main(int argc, char* argv[]) { string pre; //存储先序序列 string mid; //存储中序序列 string post; //存储后序序列 LPBINARY_TREE_NODE lpRoot; //二叉树根节点指针 cout<<"程序1已知二叉树的中序与后序序列,求先序序列"<> mid; cin >> post; TreeFromMidPost(lpRoot, mid, post, 0, mid.size()-1, 0, post.size()-1); cout<<"先序遍历结果:"; PreOrder(lpRoot); cout<> pre; cin >> mid; TreeFromMidPre(lpRoot, mid, pre, 0, mid.size()-1, 0, pre.size()-1); cout<<"先序遍历结果:"; PreOrder(lpRoot); cout<

(1)程序1的输入方式:
已知二叉树的中序与后序序列,求先序序列,请先输入中序序列,回车后输入后序序列:
例如输入:
DGBAECHF
GDBEHFCA
输出:
先序遍历结果:ABDGCEFH
中序遍历结果:DGBAECHF
后序遍历结果:GDBEHFCA

(2)程序2的输入方式:
已知二叉树的先序与中序序列,求后序序列,请先输入先序序列,回车后输入中序序列:
例如输入:
abdefgc
debgfac
输出:
先序遍历结果:abdefgc
中序遍历结果:debgfac
后序遍历结果:edgfbca

最后请看该程序运行效果图:

二叉树遍历及C语言实现_第1张图片

这是程序1所确定的二叉树图:

二叉树遍历及C语言实现_第2张图片

这是程序2所确定的二叉树图:

二叉树遍历及C语言实现_第3张图片

by Loomman, QQ:28077188, MSN: [email protected] QQ裙:30515563 ☆程序天堂☆ 请尊重作者原创,转载注明来自裂帛一剑博客,谢谢合作。

你可能感兴趣的:(C++语言)