知识蒸馏是一种模型压缩方法,是一种基于“教师-学生网络思想”的训练方法,由于其简单,有效,在工业界被广泛应用。这一技术的理论来自于2015年Hinton发表的一篇神作:
论文链接arxiv.org
Knowledge Distillation,简称KD,顾名思义,就是将已经训练好的模型包含的知识(”Knowledge”),蒸馏("Distill")提取到另一个模型里面去。今天,我们就来简单读一下这篇论文,力求用简单的语言描述论文作者的主要思想。在本文中,我们将从背景和动机讲起,然后着重介绍“知识蒸馏”的方法,最后我会讨论“温度“这个名词:
目录
1. 介绍
1.1. 论文提出的背景
1.2. “思想歧路”
2. 知识蒸馏的理论依据
2.1. Teacher Model和Student Model
2.2. 知识蒸馏的关键点
2.3. softmax函数
3. 知识蒸馏的具体方法
3.1. 通用的知识蒸馏方法
3.2. 一种特殊情形: 直接match logits(不经过softmax)
4. 关于"温度"的讨论
4.1. 温度的特点
4.2. 温度代表了什么,如何选取合适的温度?
5. 参考
虽然在一般情况下,我们不会去区分训练和部署使用的模型,但是训练和部署之间存在着一定的不一致性:
因此,模型压缩(在保证性能的前提下减少模型的参数量)成为了一个重要的问题。而”模型蒸馏“属于模型压缩的一种方法。
插句题外话,我们可以从模型参数量和训练数据量之间的相对关系来理解underfitting和overfitting。AI领域的从业者可能对此已经习以为常,但是为了力求让小白也能读懂本文,还是引用我同事的解释(我印象很深)形象地说明一下:
模型就像一个容器,训练数据中蕴含的知识就像是要装进容器里的水。当数据知识量(水量)超过模型所能建模的范围时(容器的容积),加再多的数据也不能提升效果(水再多也装不进容器),因为模型的表达空间有限(容器容积有限),就会造成 underfitting;而当模型的参数量大于已有知识所需要的表达空间时(容积大于水量,水装不满容器),就会造成 overfitting,即模型的bias会增大(想象一下摇晃半满的容器,里面水的形状是不稳定的)。
上面容器和水的比喻非常经典和贴切,但是会引起一个误解: 人们在直觉上会觉得,要保留相近的知识量,必须保留相近规模的模型。也就是说,一个模型的参数量基本决定了其所能捕获到的数据内蕴含的“知识”的量。
这样的想法是基本正确的,但是需要注意的是:
知识蒸馏使用的是Teacher—Student模型,其中teacher是“知识”的输出者,student是“知识”的接受者。知识蒸馏的过程分为2个阶段:
在本论文中,作者将问题限定在分类问题下,或者其他本质上属于分类问题的问题,该类问题的共同点是模型最后会有一个softmax层,其输出值对应了相应类别的概率值。
如果回归机器学习最最基础的理论,我们可以很清楚地意识到一点(而这一点往往在我们深入研究机器学习之后被忽略): 机器学习最根本的目的在于训练出在某个问题上泛化能力强的模型。
而现实中,由于我们不可能收集到某问题的所有数据来作为训练数据,并且新数据总是在源源不断的产生,因此我们只能退而求其次,训练目标变成在已有的训练数据集上建模输入和输出之间的关系。由于训练数据集是对真实数据分布情况的采样,训练数据集上的最优解往往会多少偏离真正的最优解(这里的讨论不考虑模型容量)。
而在知识蒸馏时,由于我们已经有了一个泛化能力较强的Net-T,我们在利用Net-T来蒸馏训练Net-S时,可以直接让Net-S去学习Net-T的泛化能力。
一个很直白且高效的迁移泛化能力的方法就是使用softmax层输出的类别的概率来作为“soft target”。
上图: Hard Target 下图: Soft Target
为什么?
softmax层的输出,除了正例之外,负标签也带有大量的信息,比如某些负标签对应的概率远远大于其他负标签。而在传统的训练过程(hard target)中,所有负标签都被统一对待。也就是说,KD的训练方式使得每个样本给Net-S带来的信息量大于传统的训练方式。
举个例子来说明一下: 在手写体数字识别任务MNIST中,输出类别有10个。
MNIST任务
假设某个输入的“2”更加形似"3",softmax的输出值中"3"对应的概率为0.1,而其他负标签对应的值都很小,而另一个"2"更加形似"7","7"对应的概率为0.1。这两个"2"对应的hard target的值是相同的,但是它们的soft target却是不同的,由此我们可见soft target蕴含着比hard target多的信息。并且soft target分布的熵相对高时,其soft target蕴含的知识就更丰富。
两个”2“的hard target相同而soft target不同
这就解释了为什么通过蒸馏的方法训练出的Net-S相比使用完全相同的模型结构和训练数据只使用hard target的训练方法得到的模型,拥有更好的泛化能力。
先回顾一下原始的softmax函数:
但要是直接使用softmax层的输出值作为soft target, 这又会带来一个问题: 当softmax输出的概率分布熵相对较小时,负标签的值都很接近0,对损失函数的贡献非常小,小到可以忽略不计。因此"温度"这个变量就派上了用场。
下面的公式时加了温度这个变量之后的softmax函数:
知识蒸馏示意图(来自https://nervanasystems.github.io/distiller/knowledge_distillation.html)
训练Net-T的过程很简单,下面详细讲讲第二步:高温蒸馏的过程。高温蒸馏过程的目标函数由distill loss(对应soft target)和student loss(对应hard target)加权得到。示意图如上。
讨论
直接match logits指的是,直接使用softmax层的输入logits(而不是输出)作为soft targets,需要最小化的目标函数是Net-T和Net-S的logits之间的平方差。
【问题】 我们都知道“蒸馏”需要在高温下进行,那么这个“蒸馏”的温度代表了什么,又是如何选取合适的温度?
随着温度T的增大,概率分布的熵逐渐增大
温度的高低改变的是Net-S训练过程中对负标签的关注程度: 温度较低时,对负标签的关注,尤其是那些显著低于平均值的负标签的关注较少;而温度较高时,负标签相关的值会相对增大,Net-S会相对多地关注到负标签。
实际上,负标签中包含一定的信息,尤其是那些值显著高于平均值的负标签。但由于Net-T的训练过程决定了负标签部分比较noisy,并且负标签的值越低,其信息就越不可靠。因此温度的选取比较empirical,本质上就是在下面两件事之中取舍:
总的来说,T的选择和Net-S的大小有关,Net-S参数量比较小的时候,相对比较低的温度就可以了(因为参数量小的模型不能capture all knowledge,所以可以适当忽略掉一些负标签的信息)