linux操作系统CPL、DPL、RPL说明

linux操作系统中特权级有3种:CPL,DPL和RPL,每个都是有4个等级。

我对他们的关系理解是这样:一般来说,CPL代表当前代码段的权限,如果它想要去访问一个段或门,首先要看看对方的权限如何,也就是检查对方的DPL,如果满足当前的权限比要访问的权限高,则有可能允许去访问,有些情况我们还要检查
选择子的权限,即RPL,因为我们通过选择子:偏移量的方式去访问一个段,这算是一个访问请求动作,因此
称为请求访问权限RPL(Requst Privilege Level)。当请求权限也满足条件,那么访问就被允许了。

CPL(Current Privilege Level)
CPL是当前执行的任务的特权等级,它存储在CS和SS的第0位和第1位上。(两位表示0~3四个等级)
通常情况下,CPL等于代码所在段的特权等级,当程序转移到不同的代码段时,处理器将改变CPL。
注意:在遇到一致代码段时,情况特殊,一致代码段的特点是:可以被等级相同或者更低特权级的代码访问,当处理器访问一个与当前代码段CPL特权级不同的一致代码段时,CPL不会改变。

DPL(Descriptor Privilege Level)
表示门或者段的特权级,存储在门(中断描述符IDT)或者段的描述符(GDT)的DPL字段中。正如上面说的那样,当当前代码段试图访问一个段或者门时,其DPL将会和当前特权级CPL以及段或门的选择子比较,根据段或者门的类型不同,DPL的含义不同:
    1.数据段的DPL:规定了访问此段的最低权限。比如一个数据段的DPL是1,那么只有运行在CPL为0或1的程序才可能访问它。为什么说可能呢?因为还有一个比较的因素是RPL。访问数据段要满足有效特权级别(上述)高于数据段的DPL.
    2.非一致代码段的DPL(不使用调用门的情况):DPL规定访问此段的特权,只有CPL与之相等才有可能访问。
    3.调用门的DPL,规定了程序或任务访问该门的最低权限。与数据段同。
    4.一致代码段和通过调用门访问的非一致代码段,DPL规定访问此段的最高权限。
     比如一个段的DPL为2,那么CPL为0或者1的程序都无法访问。
   5. TSS的DPL,同数据段。
 
RPL(Rquest Privilege Level)
RPL是通过选择子的低两位来表现出来的(这么说来,CS和SS也是存放选择子的,同时CPL存放在CS和SS的低两位上,那么对CS和SS来说,选择子的RPL=当前段的CPL)。处理器通过检查RPL和CPL来确认一个访问是否合法。即提出访问的段除了有足够的特权级CPL,如果RPL不够也是不行的(有些情况会忽略RPL检查)。


为什么要有RPL?

操作系统往往通过设置RPL的方法来避免低特权级的应用程序访问高特权级的内层数据。
例子情景:调用者调用操作系统的某过程去访问一个段。
当操作系统(被调用过程)从应用程序(调用者)接受一个选择子时,会把选择子的RPL设置称调用者的权限等级,于是操作系统用这个选择子去访问相应的段时(这时CPL为操作系统的等级,因为正在运行操作系统的代码),处理器会使用调用者的特权级去进行特权级检查,而不是正在实施访问动作的操作系统的特权级(CPL),这样操作系统就不用以自己的身份去访问(就防止了应用去访问需要高权限的内层数据,除非应用程序本身的权限就足够高)。

那么RPL的作用就比较明显了:因为同一时刻只能有一个CPL,而当低权限的应用去调用拥有至高权限的操作系统的功能来访问一个目标段时,进入操作系统代码段时CPL变成了操作系统的CPL,如果没有RPL,那么权限检查的时候就会用CPL,而这个CPL权限比应用程序高,也就可能去访问需要高权限才能访问的数据,这就不安全了。所以引入RPL,让它去代表访问权限,因此在检查CPL的同时,也会检查RPL.一般来说如果RPL的数字比CPL大(权限比CPL的低),那么RPL会起决定性作用。


你可能感兴趣的:(linux内核)