兼顾体积和性能的超强无人机大疆-“御”-DJI-Mavic现在有了Webots仿真版,可以零成本愉快玩耍了。
Webots-Mavic控制器支持C++、Python,并全面支持ROS。
DJI-Tello:https://blog.csdn.net/ZhangRelay/article/details/99291395
Webots-ROS:https://blog.csdn.net/ZhangRelay/article/details/85247284
将demo下载到对应文件下:
mavic仿真包文件树第一次使用时,控制器需要编译,否则会出现无控制器报错~
使用Mavic:
打开Webots,单击File->Open World->mavic_2_pro.wbt。
打开环境文件这时候会加载如下环境:
环境初始化,无人机起飞如果报错~请在右侧程序编辑部分,编译代码,生成控制器即可。
使用键盘就可以控制Mavic 2 pro了。
飞行定高在12m // Constants, empirically found.
const double k_vertical_thrust = 68.5; // with this thrust, the drone lifts.
const double k_vertical_offset = 0.6; // Vertical offset where the robot actually targets to stabilize itself.
const double k_vertical_p = 3.0; // P constant of the vertical PID.
const double k_roll_p = 50.0; // P constant of the roll PID.
const double k_pitch_p = 30.0; // P constant of the pitch PID.
// Variables.
double target_altitude = 1.0; // The target altitude. Can be changed by the user.
初始参数和配置,可以修改。如果使用键盘控制而非手柄,键盘控制的指令需要调整,修改如下代码:
switch (key) {
case WB_KEYBOARD_UP:
pitch_disturbance = 2.0;
break;
case WB_KEYBOARD_DOWN:
pitch_disturbance = -2.0;
break;
case WB_KEYBOARD_RIGHT:
yaw_disturbance = 1.3;
break;
case WB_KEYBOARD_LEFT:
yaw_disturbance = -1.3;
break;
case (WB_KEYBOARD_SHIFT + WB_KEYBOARD_RIGHT):
roll_disturbance = -1.0;
break;
case (WB_KEYBOARD_SHIFT + WB_KEYBOARD_LEFT):
roll_disturbance = 1.0;
break;
case (WB_KEYBOARD_SHIFT + WB_KEYBOARD_UP):
target_altitude += 0.05;
printf("target altitude: %f [m]\n", target_altitude);
break;
case (WB_KEYBOARD_SHIFT + WB_KEYBOARD_DOWN):
target_altitude -= 0.05;
printf("target altitude: %f [m]\n", target_altitude);
break;
}
默认,每次点击按键给出的控制量如上所示,需要修改可以适当调整数值。
当然啦,可以使用OpenCV和OpenAI等进行编程,实现自主飞行。
参考文献,使用ROS加入更多复杂功能,比如SLAM等。留作思考题吧。
https://github.com/omichel/webots/tree/revision/projects/robots/dji/mavic
/*
* Copyright 1996-2019 Cyberbotics Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Description: Simplistic drone control:
* - Stabilize the robot using the embedded sensors.
* - Use PID technique to stabilize the drone roll/pitch/yaw.
* - Use a cubic function applied on the vertical difference to stabilize the robot vertically.
* - Stabilize the camera.
* - Control the robot using the computer keyboard.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define SIGN(x) ((x) > 0) - ((x) < 0)
#define CLAMP(value, low, high) ((value) < (low) ? (low) : ((value) > (high) ? (high) : (value)))
int main(int argc, char **argv) {
wb_robot_init();
int timestep = (int)wb_robot_get_basic_time_step();
// Get and enable devices.
WbDeviceTag camera = wb_robot_get_device("camera");
wb_camera_enable(camera, timestep);
WbDeviceTag front_left_led = wb_robot_get_device("front left led");
WbDeviceTag front_right_led = wb_robot_get_device("front right led");
WbDeviceTag imu = wb_robot_get_device("inertial unit");
wb_inertial_unit_enable(imu, timestep);
WbDeviceTag gps = wb_robot_get_device("gps");
wb_gps_enable(gps, timestep);
WbDeviceTag compass = wb_robot_get_device("compass");
wb_compass_enable(compass, timestep);
WbDeviceTag gyro = wb_robot_get_device("gyro");
wb_gyro_enable(gyro, timestep);
wb_keyboard_enable(timestep);
WbDeviceTag camera_roll_motor = wb_robot_get_device("camera roll");
WbDeviceTag camera_pitch_motor = wb_robot_get_device("camera pitch");
// WbDeviceTag camera_yaw_motor = wb_robot_get_device("camera yaw"); // Not used in this example.
// Get propeller motors and set them to velocity mode.
WbDeviceTag front_left_motor = wb_robot_get_device("front left propeller");
WbDeviceTag front_right_motor = wb_robot_get_device("front right propeller");
WbDeviceTag rear_left_motor = wb_robot_get_device("rear left propeller");
WbDeviceTag rear_right_motor = wb_robot_get_device("rear right propeller");
WbDeviceTag motors[4] = {front_left_motor, front_right_motor, rear_left_motor, rear_right_motor};
int m;
for (m = 0; m < 4; ++m) {
wb_motor_set_position(motors[m], INFINITY);
wb_motor_set_velocity(motors[m], 1.0);
}
// Display the welcome message.
printf("Start the drone...\n");
// Wait one second.
while (wb_robot_step(timestep) != -1) {
if (wb_robot_get_time() > 1.0)
break;
}
// Display manual control message.
printf("You can control the drone with your computer keyboard:\n");
printf("- 'up': move forward.\n");
printf("- 'down': move backward.\n");
printf("- 'right': turn right.\n");
printf("- 'left': turn left.\n");
printf("- 'shift + up': increase the target altitude.\n");
printf("- 'shift + down': decrease the target altitude.\n");
printf("- 'shift + right': strafe right.\n");
printf("- 'shift + left': strafe left.\n");
// Constants, empirically found.
const double k_vertical_thrust = 68.5; // with this thrust, the drone lifts.
const double k_vertical_offset = 0.6; // Vertical offset where the robot actually targets to stabilize itself.
const double k_vertical_p = 3.0; // P constant of the vertical PID.
const double k_roll_p = 50.0; // P constant of the roll PID.
const double k_pitch_p = 30.0; // P constant of the pitch PID.
// Variables.
double target_altitude = 1.0; // The target altitude. Can be changed by the user.
// Main loop
while (wb_robot_step(timestep) != -1) {
const double time = wb_robot_get_time(); // in seconds.
// Retrieve robot position using the sensors.
const double roll = wb_inertial_unit_get_roll_pitch_yaw(imu)[0] + M_PI / 2.0;
const double pitch = wb_inertial_unit_get_roll_pitch_yaw(imu)[1];
const double altitude = wb_gps_get_values(gps)[1];
const double roll_acceleration = wb_gyro_get_values(gyro)[0];
const double pitch_acceleration = wb_gyro_get_values(gyro)[1];
// Blink the front LEDs alternatively with a 1 second rate.
const bool led_state = ((int)time) % 2;
wb_led_set(front_left_led, led_state);
wb_led_set(front_right_led, !led_state);
// Stabilize the Camera by actuating the camera motors according to the gyro feedback.
wb_motor_set_position(camera_roll_motor, -0.115 * roll_acceleration);
wb_motor_set_position(camera_pitch_motor, -0.1 * pitch_acceleration);
// Transform the keyboard input to disturbances on the stabilization algorithm.
double roll_disturbance = 0.0;
double pitch_disturbance = 0.0;
double yaw_disturbance = 0.0;
int key = wb_keyboard_get_key();
while (key > 0) {
switch (key) {
case WB_KEYBOARD_UP:
pitch_disturbance = 2.0;
break;
case WB_KEYBOARD_DOWN:
pitch_disturbance = -2.0;
break;
case WB_KEYBOARD_RIGHT:
yaw_disturbance = 1.3;
break;
case WB_KEYBOARD_LEFT:
yaw_disturbance = -1.3;
break;
case (WB_KEYBOARD_SHIFT + WB_KEYBOARD_RIGHT):
roll_disturbance = -1.0;
break;
case (WB_KEYBOARD_SHIFT + WB_KEYBOARD_LEFT):
roll_disturbance = 1.0;
break;
case (WB_KEYBOARD_SHIFT + WB_KEYBOARD_UP):
target_altitude += 0.05;
printf("target altitude: %f [m]\n", target_altitude);
break;
case (WB_KEYBOARD_SHIFT + WB_KEYBOARD_DOWN):
target_altitude -= 0.05;
printf("target altitude: %f [m]\n", target_altitude);
break;
}
key = wb_keyboard_get_key();
}
// Compute the roll, pitch, yaw and vertical inputs.
const double roll_input = k_roll_p * CLAMP(roll, -1.0, 1.0) + roll_acceleration + roll_disturbance;
const double pitch_input = k_pitch_p * CLAMP(pitch, -1.0, 1.0) - pitch_acceleration + pitch_disturbance;
const double yaw_input = yaw_disturbance;
const double clamped_difference_altitude = CLAMP(target_altitude - altitude + k_vertical_offset, -1.0, 1.0);
const double vertical_input = k_vertical_p * pow(clamped_difference_altitude, 3.0);
// Actuate the motors taking into consideration all the computed inputs.
const double front_left_motor_input = k_vertical_thrust + vertical_input - roll_input - pitch_input + yaw_input;
const double front_right_motor_input = k_vertical_thrust + vertical_input + roll_input - pitch_input - yaw_input;
const double rear_left_motor_input = k_vertical_thrust + vertical_input - roll_input + pitch_input - yaw_input;
const double rear_right_motor_input = k_vertical_thrust + vertical_input + roll_input + pitch_input + yaw_input;
wb_motor_set_velocity(front_left_motor, front_left_motor_input);
wb_motor_set_velocity(front_right_motor, -front_right_motor_input);
wb_motor_set_velocity(rear_left_motor, -rear_left_motor_input);
wb_motor_set_velocity(rear_right_motor, rear_right_motor_input);
};
wb_robot_cleanup();
return EXIT_SUCCESS;
}