1074 To the Max


To the Max

Time limit: 1 Seconds   Memory limit: 32768K  
Total Submit: 4133   Accepted Submit: 2006  

Problem

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.

The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].


Output

Output the sum of the maximal sub-rectangle.


Example

Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2

Output

15


Problem Source: Greater New York 2001
  http://acm.zju.edu.cn/show_problem.php?pid=1074

 

#include  < iostream >
using   namespace  std;

int  matrix[ 101 ][ 101 ];

int  maxSubSum(  int  n,  int  a[] );
int  maxSum(  int  n );

int  main()
{
    
int n;
    
    
while ( cin >> n )
    
{
        
for ( int i = 0; i < n; i++ )
        
{
            
for ( int j = 0; j < n; j++ )
            
{
                cin 
>> matrix[i][j];
            }

        }

        
        cout 
<< maxSum( n ) << endl;

    }

    
    
return 0;
}


int  maxSubSum(  int  n,  int  a[] )
{
    
int max = -127;
    
int thisSum = 0;
    
    
for ( int i = 0; i < n; i++ )
    
{
        
if ( thisSum > 0 )
            thisSum 
+= a[i];
        
else
            thisSum 
= a[i];
        
        
if ( thisSum > max )
            max 
= thisSum;
    }

    
    
return max;
}


int  maxSum(  int  n )
{
    
int b[101];
    
int sum = 0;
    
int max = -127;
    
    
for ( int i = 0; i < n; i++ )
    
{
        
for ( int k = 0; k < n; k++ ) b[k] = matrix[i][k];
        
        sum 
= maxSubSum( n, b );
        
if ( sum > max ) max = sum;
        
        
for ( int j = i+1; j < n; j++ )
        
{
            
for ( int k = 0; k < n; k++ ) b[k] += matrix[j][k];
            sum 
= maxSubSum( n, b );
            
if ( sum > max ) max = sum;
        }

    }

    
    
return max;
}

你可能感兴趣的:(1074 To the Max)