有一个正整数和负整数组成的NxN矩阵,请编写代码找出元素总和最大的子矩阵。
求一个M*N的矩阵的最大子矩阵和。
比如在如下这个矩阵中:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
拥有最大和的子矩阵为:
9 2
-4 1
-1 8
其和为15。
思路:
因为矩阵肯定是对齐的,所以如我们将两行加起来求最大子数组就可以得到一个行数为2的子矩阵。所以问题就转化成了求一个数组的最大子数组和。然后就是枚举第i行到第j行相加得到的数组了。
首先,这个子矩阵可以是任意大小的,而且起始点也可以在任何地方,所以,要把最大子矩阵找出来,我们要考虑多种情况。
假定原始矩阵的行数为M,那么对于子矩阵,它的行数可以是1到M的任何一个数,而且,对于一个K行(K < M)的子矩阵,它的第一行可以是原始矩阵的第1行到 M - K + 1 的任意一行。
例子:
对于上面的矩阵,如果子矩阵的行数是2,那么它可以是下面几个矩阵的子矩阵:
0 -2 -7 0
9 2 -6 2
或者
9 2 -6 2
-4 1 -4 1
或者
-4 1 -4 1
-1 8 0 -2
在每一种情况里(我们这里有三种),我们还要找出一个最大的子矩阵,当然,这只是一种情况的最大子矩阵(局部最大),不一定是global最大。但是,如果我们知道每一种情况的最大,要找出global最大,那就小菜一碟儿了。
在讲在一个特殊情况下求最大子矩阵之前,先讲一个事实:
假设这个最大子矩阵的维数是一维,要找出最大子矩阵, 原理与求“最大子段和问题” 是一样的。最大子段和问题的递推公式是 b[j]=max{b[j-1]+a[j], a[j]},b[j] 指的是从0开始到j的最大子段和。
例子:
假设原始矩阵为:[9, 2, -6, 2], 那么b[] = {9, 11, 5, 7}, 那么最大字段和为11, 如果找最大子矩阵的话,那么这个子矩阵是 [9, 2]
求最大子数组和的代码如下:
public static int sumOfSubArray(int arr[])//求最大子数组的和
{
if(arr.length==0||arr==null)
return 0;
int max=Integer.MIN_VALUE;
int cur=0;
for(int i=0;i
为了能够找出最大的子矩阵,我们需要考虑所有的情况。假设这个子矩阵是 2 *k, 也就是说它只有两行,要找出最大子矩阵,我们要从左到右不断的遍历才能找出在这种情况下的最大子矩阵。如果我们把这两行上下相加,情况就和求“最大子段和问题” 又是一样的了。
为了找出在原始矩阵里的最大子矩阵,我们要遍历所有的子矩阵的可能情况,也就是说,我们要考虑这个子矩阵有可能只有1行,2行,。。。到n行。而在每一种情况下,我们都要把它所对应的矩阵部分上下相加才求最大子矩阵(局部)。
比如,假设子矩阵是一个3*k的矩阵,而且,它的一行是原始矩阵的第二行,那么,我们就要在
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
里找最大的子矩阵。
如果把它上下相加,我们就变成了 4, 11, -10,1, 从这个数列里可以看出,在这种情况下,最大子矩阵是一个3*2的矩阵,最大和是15.
package test;
import java.util.Scanner;
/**
* @author xiaohao
* @date 创建时间:Aug 11, 2017 10:25:49 AM
* @version 1.0
*/
public class SumOfSubMatrix {
public static void main(String[] args) {
// TODO Auto-generated method stub
// int arr[][]={{1,2,-3},{3,4,-5},{-5,-6,-7}};
Scanner sc= new Scanner(System.in);
while(sc.hasNext())
{
int n= sc.nextInt();
int arr[][]=new int [n][n];
for(int i=0;imax)
max=maxNum;
}
}
return max;
}
public static int sumOfSubArray(int arr[])
{
if(arr.length==0||arr==null)
return 0;
int max=Integer.MIN_VALUE;
int cur=0;
for(int i=0;i