Topic |
Resources |
References |
Feature Extraction
|
-
SIFT [1] [Demo program][SIFT Library] [VLFeat]
-
PCA-SIFT [2] [Project]
-
Affine-SIFT [3] [Project]
-
SURF [4] [OpenSURF] [Matlab Wrapper]
-
Affine Covariant Features [5] [Oxford project]
-
MSER [6] [Oxford project] [VLFeat]
-
Geometric Blur [7] [Code]
-
Local Self-Similarity Descriptor [8] [Oxford implementation]
-
Global and Efficient Self-Similarity [9] [Code]
-
Histogram of Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]
-
GIST [11] [Project]
-
Shape Context [12] [Project]
-
Color Descriptor [13] [Project]
-
Pyramids of Histograms of Oriented Gradients [Code]
-
Space-Time Interest Points (STIP) [14] [Code]
-
Boundary Preserving Dense Local Regions [15][Project]
|
- D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. [PDF]
- Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004. [PDF]
- J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009. [PDF]
- H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features,ECCV, 2006. [PDF]
- K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectors. IJCV, 2005. [PDF]
- J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002. [PDF]
- A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005. [PDF]
- E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007. [PDF]
- T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and Detection. CVPR 2010. [PDF]
- N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005. [PDF]
- A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, IJCV, 2001. [PDF]
- S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contexts, PAMI, 2002. [PDF]
- K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, PAMI, 2010.
- I. Laptev, On Space-Time Interest Points, IJCV, 2005. [PDF]
- J. Kim and K. Grauman, Boundary Preserving Dense Local Regions, CVPR 2011. [PDF]
|
Image Segmentation
|
-
Normalized Cut [1] [Matlab code]
-
Gerg Mori' Superpixel code [2] [Matlab code]
-
Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]
-
Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]
-
OWT-UCM Hierarchical Segmentation [5] [Resources]
-
Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]
-
Quick-Shift [7] [VLFeat]
-
SLIC Superpixels [8] [Project]
-
Segmentation by Minimum Code Length [9] [Project]
-
Biased Normalized Cut [10] [Project]
-
Segmentation Tree [11-12] [Project]
-
Entropy Rate Superpixel Segmentation [13] [Code]
|
- J. Shi and J Malik, Normalized Cuts and Image Segmentation, PAMI, 2000 [PDF]
- X. Ren and J. Malik. Learning a classification model for segmentation.ICCV, 2003. [PDF]
- P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation, IJCV 2004. [PDF]
- D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002. [PDF]
- P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image Segmentation. PAMI, 2011. [PDF]
- A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric Flows, PAMI 2009. [PDF]
- A. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking,ECCV, 2008. [PDF]
- R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010. [PDF]
- A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2007. [PDF]
- S. Maji, N. Vishnoi and J. Malik, Biased Normalized Cut, CVPR 2011
- E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,” ACCV 2009. [PDF]
- N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996 [PDF]
- M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011 [PDF]
|
Object Detection |
-
A simple object detector with boosting [Project]
-
INRIA Object Detection and Localization Toolkit [1] [Project]
-
Discriminatively Trained Deformable Part Models [2] [Project]
-
Cascade Object Detection with Deformable Part Models [3] [Project]
-
Poselet [4] [Project]
-
Implicit Shape Model [5] [Project]
- Viola and Jones's Face Detection [6] [Project]
|
- N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005. [PDF]
- P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
Object Detection with Discriminatively Trained Part Based Models, PAMI, 2010 [PDF]
- P. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part Models. CVPR 2010 [PDF]
- L. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations, ICCV 2009 [PDF]
- B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and Segmentation, IJCV, 2008. [PDF]
- P. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple Features, CVPR 2001. [PDF]
|
Saliency Detection |
-
Itti, Koch, and Niebur' saliency detection [1] [Matlab code]
-
Frequency-tuned salient region detection [2] [Project]
-
Saliency detection using maximum symmetric surround [3] [Project]
-
Attention via Information Maximization [4] [Matlab code]
-
Context-aware saliency detection [5] [Matlab code]
-
Graph-based visual saliency [6] [Matlab code]
-
Saliency detection: A spectral residual approach. [7] [Matlab code]
-
Segmenting salient objects from images and videos. [8] [Matlab code]
-
Saliency Using Natural statistics. [9] [Matlab code]
-
Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]
-
Learning to Predict Where Humans Look [11] [Project]
- Global Contrast based Salient Region Detection [12] [Project]
|
- L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. PAMI, 1998. [PDF]
- R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009. [PDF]
- R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010. [PDF]
- N. Bruce and J. Tsotsos. Saliency based on information maximization. InNIPS, 2005. [PDF]
- S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010. [PDF]
- J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007. [PDF]
- X. Hou and L. Zhang. Saliency detection: A spectral residual approach.CVPR, 2007. [PDF]
- E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videos. CVPR, 2010. [PDF]
- L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statistics. Journal of Vision, 2008. [PDF]
- D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered Scenes, NIPS, 2004. [PDF]
- T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans Look, ICCV, 2009. [PDF]
- M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region Detection. CVPR 2011.
|
Image Classification |
-
Pyramid Match [1] [Project]
-
Spatial Pyramid Matching [2] [Code]
-
Locality-constrained Linear Coding [3] [Project] [Matlab code]
-
Sparse Coding [4] [Project] [Matlab code]
-
Texture Classification [5] [Project]
-
Multiple Kernels for Image Classification [6] [Project]
-
Feature Combination [7] [Project]
- SuperParsing [Code]
|
- K. Grauman and T. Darrell, The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, ICCV 2005. [PDF]
- S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, CVPR 2006[PDF]
- J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image Classification, CVPR, 2010 [PDF]
- J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image Classification, CVPR, 2009 [PDF]
- M. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005. [PDF]
- A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object Detection. ICCV, 2009. [PDF]
- P. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009. [PDF]
- J. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image
Parsing with Superpixels, ECCV 2010. [PDF]
|
Category-Independent Object Proposal |
-
Objectness measure [1] [Code]
-
Parametric min-cut [2] [Project]
-
Object proposal [3] [Project]
|
- B. Alexe, T. Deselaers, V. Ferrari, What is an Object?, CVPR 2010 [PDF]
- J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation, CVPR 2010. [PDF]
- I. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010. [PDF]
|
MRF |
- Graph Cut [Project] [C++/Matlab Wrapper Code]
|
- Y. Boykov, O. Veksler and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 [PDF]
|
Shadow Detection |
|
- R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011 [PDF]
- J.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer Photographs, ECCV 2010 [PDF]
|
Optical Flow
|
-
Kanade-Lucas-Tomasi Feature Tracker [C Code]
-
Optical Flow Matlab/C++ code by Ce Liu [Project]
-
Horn and Schunck's method by Deqing Sun [Code]
-
Black and Anandan's method by Deqing Sun [Code]
-
Optical flow code by Deqing Sun [Matlab Code] [Project]
-
Large Displacement Optical Flow by Thomas Brox [Executable for 64-bit Linux] [ Matlab Mex-functions for 64-bit Linux and 32-bit Windows] [Project]
-
Variational Optical Flow by Thomas Brox [Executable for 64-bit Linux] [ Executable for 32-bit Windows ] [ Matlab Mex-functions for 64-bit Linux and 32-bit Windows ] [Project]
|
- B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, IJCAI 1981. [PDF]
- J. Shi, C. Tomasi, Good Feature to Track, CVPR 1994. [PDF]
- C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral Thesis. MIT 2009. [PDF]
- B.K.P. Horn and B.G. Schunck, Determining Optical Flow, Artificial Intelligence 1981. [PDF]
- M. J. Black and P. Anandan, A framework for the robust estimation of optical flow, ICCV 93. [PDF]
- D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principles, CVPR 2010. [PDF]
- T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimation, PAMI, 2010 [PDF]
- T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, ECCV 2004 [PDF]
|
Object Tracking |
-
Particle filter object tracking [1] [Project]
-
KLT Tracker [2-3] [Project]
-
MILTrack [4] [Code]
-
Incremental Learning for Robust Visual Tracking [5] [Project]
-
Online Boosting Trackers [6-7] [Project]
-
L1 Tracking [8] [Matlab code]
|
- P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking ECCV, 2002. [PDF]
- B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, IJCAI 1981. [PDF]
- J. Shi, C. Tomasi, Good Feature to Track, CVPR 1994. [PDF]
- B. Babenko, M. H. Yang, S. Belongie, Robust Object Tracking with Online Multiple Instance Learning, PAMI 2011 [PDF]
- D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual Tracking, IJCV 2007 [PDF]
- H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR 2006 [PDF]
- H. Grabner, C. Leistner, and H. Bischof, Semi-supervised On-line Boosting for Robust Tracking, ECCV 2008 [PDF]
- X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009. [PDF]
|
Image Matting |
-
Closed Form Matting [Code]
-
Spectral Matting [Project]
-
Learning-based Matting [Code]
|
- A. Levin D. Lischinski and Y. Weiss. A Closed Form Solution to Natural Image Matting, PAMI 2008 [PDF]
- A. Levin, A. Rav-Acha, D. Lischinski. Spectral Matting. PAMI 2008. [PDF]
- Y. Zheng and C. Kambhamettu, Learning Based Digital Matting, ICCV 2009 [PDF]
|
Bilateral Filtering |
-
Fast Bilateral Filter [Project]
-
Real-time O(1) Bilateral Filtering [Code]
-
SVM for Edge-Preserving Filtering [Code]
|
- Q. Yang, K.-H. Tan and N. Ahuja, Real-time O(1) Bilateral Filtering,
CVPR 2009. [PDF]
- Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering,
CVPR 2010. [PDF]
|
Image Denoising |
-
K-SVD [Matlab code]
-
BLS-GSM [Project]
-
BM3D [Project]
-
FoE [Code]
-
GFoE [Code]
-
Non-local means [Code]
-
Kernel regression [Code]
|
|
Image Super-Resolution |
-
MRF for image super-resolution [Project]
-
Multi-frame image super-resolution [Project]
-
UCSC Super-resolution [Project]
-
Sprarse coding super-resolution [Code]
|
|
Image Deblurring |
|
|
Image Quality Assessment |
|
- L. Zhang, L. Zhang, X. Mou and D. Zhang, FSIM: A Feature Similarity Index for Image Quality Assessment, TIP 2011. [PDF]
- N. Damera-Venkata, and T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik,Image Quality Assessment Based on a Degradation Model, TIP 2000. [PDF]
- Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, TIP 2004. [PDF]
- B. Ghanem, E. Resendiz, and N. Ahuja, Segmentation-Based Perceptual Image Quality Assessment (SPIQA), ICIP 2008. [PDF]
|
Density Estimation |
- Kernel Density Estimation Toolbox [Project]
|
|
Dimension Reduction |
|
|
Sparse Coding |
|
|
Low-Rank Matrix Completion |
|
|
Nearest Neighbors matching |
|
|
Steoreo |
|
- D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, IJCV 2002 [PDF]
|
Structure from motion |
|
- N. Snavely, S. M. Seitz, R. Szeliski. Photo Tourism: Exploring image collections in 3D. SIGGRAPH, 2006. [PDF]
|
Distance Transformation |
- Distance Transforms of Sampled Functions [1] [Project]
|
- P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functions. Technical report, Cornell University, 2004. [PDF]
|
Chamfer Matching |
- Fast Directional Chamfer Matching [Code]
|
- M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, Fast Directional Chamfer Matching, CVPR 2010 [PDF]
|
Clustering |
-
K-Means [VLFeat] [Oxford code]
-
Spectral Clustering [UW Project][Code] [Self-Tuning code]
-
Affinity Propagation [Project]
|
|
Classification |
|
|
Regression |
|
|
Multiple Kernel Learning (MKL) |
|
- S. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf . Large scale multiple kernel learning. JMLR, 2006. [PDF]
- F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011. [PDF]
- F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learning. CVPR, 2010. [PDF]
- A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. Simplemkl. JMRL, 2008. [PDF]
|
Multiple Instance Learning (MIL) |
|
- C. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized Trees, ECCV 2010. [PDF]
- Z. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selection, PAMI 2010. [PDF]
- Y. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance Selection. PAMI 2006 [PDF]
- Yixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with Regions, JMLR 2004. [PDF]
|
Other Utilities |
-
Code for downloading Flickr images, by James Hays [Code]
-
The Lightspeed Matlab Toolbox by Tom Minka [Code]
-
MATLAB Functions for Multiple View Geometry [Code]
-
Peter's Functions for Computer Vision [Code]
- Statistical Pattern Recognition Toolbox [Code]
|
|