施托尔茨定理

定理描述:

  若

  1. $y_{n+1}>y_n   (n=1,2,\cdots)$
  2. $\lim\limits_{n\rightarrow\infty}y_n=+\infty$
  3. $\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$存在

则 $\lim\limits_{n\rightarrow\infty}\frac{x_n}{y_n}=\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$

证:假定$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=a$由此,并注意到$y_n\rightarrow +\infty$,可知,对于任给的$\varepsilon >0$,存在正整数N,使当n>N时恒有

  $\mid \frac{x_{n+1}-x_n}{y_{n+1}-y_n}-a\mid <\frac{\varepsilon}{2} (且y_n>0)$

于是,分数(当n>N时)

  $\frac{x_{N+2}-x_{N+1}}{y_{N+2}-y_{N+1}},\frac{x_{N+3}-x_{N+2}}{y_{N+3}-y_{N+2}}\cdots ,\frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}},\frac{x_{n+1}-x_{n}}{y_{n+1}-y_{n}}$

都包含在$(a-\frac{\varepsilon}{2},a+\frac{\varepsilon}{2})$之间(由极限的定义可直接得出),因为$y_{n+1}>y_n$,所以这些分数的分母都是正数,于是,得

  $(a-\frac{\varepsilon}{2})(y_{N+2}-y_{N+1})  $(a-\frac{\varepsilon}{2})(y_{N+3}-y_{N+2})                     $\vdots$
  $(a-\frac{\varepsilon}{2})(y_{n+1}-y_{n})

相加之,得

  $(a-\frac{\varepsilon}{2})(y_{n+1}-y_{N+1})

即$a-\frac{\varepsilon}{2}<\frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}N时,恒有$\mid \frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a\mid <\frac{\varepsilon}{2}$(注意N是确定的).另外我们有(当n>N时)

  $\frac{x_n}{y_n}-a=\frac{x_{N+1}-ay_{N+1}}{y_n}+(1-\frac{y_{N+1}}{y_n})(\frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a)$,

  故$\mid \frac{x_n}{y_n}-a\mid \leq\mid \frac{x_{N+1}-ay_{N+1}}{y_n}\mid +\frac{\varepsilon}{2}$,

现取正整数N'>N,使当n>N'时,恒有

  $\mid \frac{x_{N+1}-ay_{N+1}}{y_n}\mid <\frac{\varepsilon}{2}$,

于是,当n>N'时,恒有$\mid \frac{x_n}{y_n}-a\mid <\varepsilon$.

由此可知,$\lim\limits_{n\rightarrow \infty}\frac{x_n}{y_n}=a=\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$.证毕.

注:条件3中换为$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=+\infty(或-\infty)$.,则结论任然成立(也就是极限都不存在)

转载于:https://www.cnblogs.com/Asika3912333/p/11422065.html

你可能感兴趣的:(施托尔茨定理)