仿射变换

什么是仿射变换?

  1. 一个任意的仿射变换都能表示为 乘以一个矩阵 (线性变换) 接着再 加上一个向量 (平移).

  2. 综上所述, 我们能够用仿射变换来表示:

    1. 旋转 (线性变换)
    2. 平移 (向量加)
    3. 缩放操作 (线性变换)

    你现在可以知道, 事实上, 仿射变换代表的是两幅图之间的 关系 .

  3. 我们通常使用 2 \times 3 矩阵来表示仿射变换.

    A = \begin{bmatrix}     a_{00} & a_{01} \\     a_{10} & a_{11}     \end{bmatrix}_{2 \times 2} B = \begin{bmatrix}     b_{00} \\     b_{10}     \end{bmatrix}_{2 \times 1} M = \begin{bmatrix}     A & B     \end{bmatrix} =\begin{bmatrix}     a_{00} & a_{01} & b_{00} \\     a_{10} & a_{11} & b_{10}\end{bmatrix}_{2 \times 3}

    考虑到我们要使用矩阵 AB 对二维向量 X = \begin{bmatrix}x \\ y\end{bmatrix} 做变换, 所以也能表示为下列形式:

    T = A \cdot \begin{bmatrix}x \\ y\end{bmatrix} + B or T = M \cdot  [x, y, 1]^{T}

    T =  \begin{bmatrix}    a_{00}x + a_{01}y + b_{00} \\    a_{10}x + a_{11}y + b_{10}    \end{bmatrix}

怎样才能求得一个仿射变换?

  1. 好问题. 我们在上文有提到过仿射变换基本表示的就是两幅图片之间的 联系 . 关于这种联系的信息大致可从以下两种场景获得:

    1. 我们已知 XT 而且我们知道他们是有联系的. 接下来我们的工作就是求出矩阵 M
    2. 我们已知 M and X. 要想求得 T. 我们只要应用算式 T = M \cdot X 即可. 对于这种联系的信息可以用矩阵 M 清晰的表达 (即给出明确的2×3矩阵) 或者也可以用两幅图片点之间几何关系来表达.
  2. 让我们形象地说明一下. 因为矩阵 M 联系着两幅图片, 我们以其表示两图中各三点直接的联系为例. 见下图:

    Theory of Warp Affine

    点1, 2 和 3 (在图一中形成一个三角形) 与图二中三个点一一映射, 仍然形成三角形, 但形状已经大大改变. 如果我们能通过这样两组三点求出仿射变换 (你能选择自己喜欢的点), 接下来我们就能把仿射变换应用到图像中所有的点.



你可能感兴趣的:(图像处理,仿射变换)