stm32使用红黑树

停更了很久啦。一直在忙着交接和补功能没时间来写博客。今天敷衍了事一下,介绍一下怎么去移植红黑树到stm32中使用。
那么关于红黑树的树状结构,左旋右旋的规则等等就不介绍了,这里仅仅记录一下我的移植过程。

我借鉴的是u-boot版本号为2012.04.01 这个可以在UBOOT的主Makefile中查到,kernel版本号为3.4.20 。两个都可以。以u-boot为例,打开u-boot目录下的lib目录,我们可以看到有crc7,16,32,md5等等,我们的目标是rbtree.c。我们把这个文件打开看看

/*
  Red Black Trees
  (C) 1999  Andrea Arcangeli 
  (C) 2002  David Woodhouse 

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

  linux/lib/rbtree.c
*/

#include 
#include 

static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *right = node->rb_right;
	struct rb_node *parent = rb_parent(node);

	if ((node->rb_right = right->rb_left))
		rb_set_parent(right->rb_left, node);
	right->rb_left = node;

	rb_set_parent(right, parent);

	if (parent)
	{
		if (node == parent->rb_left)
			parent->rb_left = right;
		else
			parent->rb_right = right;
	}
	else
		root->rb_node = right;
	rb_set_parent(node, right);
}

static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *left = node->rb_left;
	struct rb_node *parent = rb_parent(node);

	if ((node->rb_left = left->rb_right))
		rb_set_parent(left->rb_right, node);
	left->rb_right = node;

	rb_set_parent(left, parent);

	if (parent)
	{
		if (node == parent->rb_right)
			parent->rb_right = left;
		else
			parent->rb_left = left;
	}
	else
		root->rb_node = left;
	rb_set_parent(node, left);
}

void rb_insert_color(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *parent, *gparent;

	while ((parent = rb_parent(node)) && rb_is_red(parent))
	{
		gparent = rb_parent(parent);

		if (parent == gparent->rb_left)
		{
			{
				register struct rb_node *uncle = gparent->rb_right;
				if (uncle && rb_is_red(uncle))
				{
					rb_set_black(uncle);
					rb_set_black(parent);
					rb_set_red(gparent);
					node = gparent;
					continue;
				}
			}

			if (parent->rb_right == node)
			{
				register struct rb_node *tmp;
				__rb_rotate_left(parent, root);
				tmp = parent;
				parent = node;
				node = tmp;
			}

			rb_set_black(parent);
			rb_set_red(gparent);
			__rb_rotate_right(gparent, root);
		} else {
			{
				register struct rb_node *uncle = gparent->rb_left;
				if (uncle && rb_is_red(uncle))
				{
					rb_set_black(uncle);
					rb_set_black(parent);
					rb_set_red(gparent);
					node = gparent;
					continue;
				}
			}

			if (parent->rb_left == node)
			{
				register struct rb_node *tmp;
				__rb_rotate_right(parent, root);
				tmp = parent;
				parent = node;
				node = tmp;
			}

			rb_set_black(parent);
			rb_set_red(gparent);
			__rb_rotate_left(gparent, root);
		}
	}

	rb_set_black(root->rb_node);
}

static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
			     struct rb_root *root)
{
	struct rb_node *other;

	while ((!node || rb_is_black(node)) && node != root->rb_node)
	{
		if (parent->rb_left == node)
		{
			other = parent->rb_right;
			if (rb_is_red(other))
			{
				rb_set_black(other);
				rb_set_red(parent);
				__rb_rotate_left(parent, root);
				other = parent->rb_right;
			}
			if ((!other->rb_left || rb_is_black(other->rb_left)) &&
			    (!other->rb_right || rb_is_black(other->rb_right)))
			{
				rb_set_red(other);
				node = parent;
				parent = rb_parent(node);
			}
			else
			{
				if (!other->rb_right || rb_is_black(other->rb_right))
				{
					struct rb_node *o_left;
					if ((o_left = other->rb_left))
						rb_set_black(o_left);
					rb_set_red(other);
					__rb_rotate_right(other, root);
					other = parent->rb_right;
				}
				rb_set_color(other, rb_color(parent));
				rb_set_black(parent);
				if (other->rb_right)
					rb_set_black(other->rb_right);
				__rb_rotate_left(parent, root);
				node = root->rb_node;
				break;
			}
		}
		else
		{
			other = parent->rb_left;
			if (rb_is_red(other))
			{
				rb_set_black(other);
				rb_set_red(parent);
				__rb_rotate_right(parent, root);
				other = parent->rb_left;
			}
			if ((!other->rb_left || rb_is_black(other->rb_left)) &&
			    (!other->rb_right || rb_is_black(other->rb_right)))
			{
				rb_set_red(other);
				node = parent;
				parent = rb_parent(node);
			}
			else
			{
				if (!other->rb_left || rb_is_black(other->rb_left))
				{
					register struct rb_node *o_right;
					if ((o_right = other->rb_right))
						rb_set_black(o_right);
					rb_set_red(other);
					__rb_rotate_left(other, root);
					other = parent->rb_left;
				}
				rb_set_color(other, rb_color(parent));
				rb_set_black(parent);
				if (other->rb_left)
					rb_set_black(other->rb_left);
				__rb_rotate_right(parent, root);
				node = root->rb_node;
				break;
			}
		}
	}
	if (node)
		rb_set_black(node);
}

void rb_erase(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *child, *parent;
	int color;

	if (!node->rb_left)
		child = node->rb_right;
	else if (!node->rb_right)
		child = node->rb_left;
	else
	{
		struct rb_node *old = node, *left;

		node = node->rb_right;
		while ((left = node->rb_left) != NULL)
			node = left;
		child = node->rb_right;
		parent = rb_parent(node);
		color = rb_color(node);

		if (child)
			rb_set_parent(child, parent);
		if (parent == old) {
			parent->rb_right = child;
			parent = node;
		} else
			parent->rb_left = child;

		node->rb_parent_color = old->rb_parent_color;
		node->rb_right = old->rb_right;
		node->rb_left = old->rb_left;

		if (rb_parent(old))
		{
			if (rb_parent(old)->rb_left == old)
				rb_parent(old)->rb_left = node;
			else
				rb_parent(old)->rb_right = node;
		} else
			root->rb_node = node;

		rb_set_parent(old->rb_left, node);
		if (old->rb_right)
			rb_set_parent(old->rb_right, node);
		goto color;
	}

	parent = rb_parent(node);
	color = rb_color(node);

	if (child)
		rb_set_parent(child, parent);
	if (parent)
	{
		if (parent->rb_left == node)
			parent->rb_left = child;
		else
			parent->rb_right = child;
	}
	else
		root->rb_node = child;

 color:
	if (color == RB_BLACK)
		__rb_erase_color(child, parent, root);
}

/*
 * This function returns the first node (in sort order) of the tree.
 */
struct rb_node *rb_first(struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_left)
		n = n->rb_left;
	return n;
}

struct rb_node *rb_last(struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_right)
		n = n->rb_right;
	return n;
}

struct rb_node *rb_next(struct rb_node *node)
{
	struct rb_node *parent;

	if (rb_parent(node) == node)
		return NULL;

	/* If we have a right-hand child, go down and then left as far
	   as we can. */
	if (node->rb_right) {
		node = node->rb_right;
		while (node->rb_left)
			node=node->rb_left;
		return node;
	}

	/* No right-hand children.  Everything down and left is
	   smaller than us, so any 'next' node must be in the general
	   direction of our parent. Go up the tree; any time the
	   ancestor is a right-hand child of its parent, keep going
	   up. First time it's a left-hand child of its parent, said
	   parent is our 'next' node. */
	while ((parent = rb_parent(node)) && node == parent->rb_right)
		node = parent;

	return parent;
}

struct rb_node *rb_prev(struct rb_node *node)
{
	struct rb_node *parent;

	if (rb_parent(node) == node)
		return NULL;

	/* If we have a left-hand child, go down and then right as far
	   as we can. */
	if (node->rb_left) {
		node = node->rb_left;
		while (node->rb_right)
			node=node->rb_right;
		return node;
	}

	/* No left-hand children. Go up till we find an ancestor which
	   is a right-hand child of its parent */
	while ((parent = rb_parent(node)) && node == parent->rb_left)
		node = parent;

	return parent;
}

void rb_replace_node(struct rb_node *victim, struct rb_node *new,
		     struct rb_root *root)
{
	struct rb_node *parent = rb_parent(victim);

	/* Set the surrounding nodes to point to the replacement */
	if (parent) {
		if (victim == parent->rb_left)
			parent->rb_left = new;
		else
			parent->rb_right = new;
	} else {
		root->rb_node = new;
	}
	if (victim->rb_left)
		rb_set_parent(victim->rb_left, new);
	if (victim->rb_right)
		rb_set_parent(victim->rb_right, new);

	/* Copy the pointers/colour from the victim to the replacement */
	*new = *victim;
}

代码量不多,接近400行,从函数名就不难看出,这里只是一些红黑树的左右旋,替换节点以及一些节点定位。那么具体怎么使用呢?我们再看看头文件 ------ 找到u-boot/include/linux/rbtree.h

/*
  Red Black Trees
  (C) 1999  Andrea Arcangeli 

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

  linux/include/linux/rbtree.h

  To use rbtrees you'll have to implement your own insert and search cores.
  This will avoid us to use callbacks and to drop drammatically performances.
  I know it's not the cleaner way,  but in C (not in C++) to get
  performances and genericity...

  Some example of insert and search follows here. The search is a plain
  normal search over an ordered tree. The insert instead must be implemented
  int two steps: as first thing the code must insert the element in
  order as a red leaf in the tree, then the support library function
  rb_insert_color() must be called. Such function will do the
  not trivial work to rebalance the rbtree if necessary.

-----------------------------------------------------------------------
static inline struct page * rb_search_page_cache(struct inode * inode,
						 unsigned long offset)
{
	struct rb_node * n = inode->i_rb_page_cache.rb_node;
	struct page * page;

	while (n)
	{
		page = rb_entry(n, struct page, rb_page_cache);

		if (offset < page->offset)
			n = n->rb_left;
		else if (offset > page->offset)
			n = n->rb_right;
		else
			return page;
	}
	return NULL;
}

static inline struct page * __rb_insert_page_cache(struct inode * inode,
						   unsigned long offset,
						   struct rb_node * node)
{
	struct rb_node ** p = &inode->i_rb_page_cache.rb_node;
	struct rb_node * parent = NULL;
	struct page * page;

	while (*p)
	{
		parent = *p;
		page = rb_entry(parent, struct page, rb_page_cache);

		if (offset < page->offset)
			p = &(*p)->rb_left;
		else if (offset > page->offset)
			p = &(*p)->rb_right;
		else
			return page;
	}

	rb_link_node(node, parent, p);

	return NULL;
}

static inline struct page * rb_insert_page_cache(struct inode * inode,
						 unsigned long offset,
						 struct rb_node * node)
{
	struct page * ret;
	if ((ret = __rb_insert_page_cache(inode, offset, node)))
		goto out;
	rb_insert_color(node, &inode->i_rb_page_cache);
 out:
	return ret;
}
-----------------------------------------------------------------------
*/

#ifndef	_LINUX_RBTREE_H
#define	_LINUX_RBTREE_H

#include 

struct rb_node
{
	unsigned long  rb_parent_color;
#define	RB_RED		0
#define	RB_BLACK	1
	struct rb_node *rb_right;
	struct rb_node *rb_left;
} __attribute__((aligned(sizeof(long))));
    /* The alignment might seem pointless, but allegedly CRIS needs it */

struct rb_root
{
	struct rb_node *rb_node;
};


#define rb_parent(r)   ((struct rb_node *)((r)->rb_parent_color & ~3))
#define rb_color(r)   ((r)->rb_parent_color & 1)
#define rb_is_red(r)   (!rb_color(r))
#define rb_is_black(r) rb_color(r)
#define rb_set_red(r)  do { (r)->rb_parent_color &= ~1; } while (0)
#define rb_set_black(r)  do { (r)->rb_parent_color |= 1; } while (0)

static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
{
	rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long)p;
}
static inline void rb_set_color(struct rb_node *rb, int color)
{
	rb->rb_parent_color = (rb->rb_parent_color & ~1) | color;
}

#define RB_ROOT	(struct rb_root) { NULL, }
#define	rb_entry(ptr, type, member) container_of(ptr, type, member)

#define RB_EMPTY_ROOT(root)	((root)->rb_node == NULL)
#define RB_EMPTY_NODE(node)	(rb_parent(node) == node)
#define RB_CLEAR_NODE(node)	(rb_set_parent(node, node))

extern void rb_insert_color(struct rb_node *, struct rb_root *);
extern void rb_erase(struct rb_node *, struct rb_root *);

/* Find logical next and previous nodes in a tree */
extern struct rb_node *rb_next(struct rb_node *);
extern struct rb_node *rb_prev(struct rb_node *);
extern struct rb_node *rb_first(struct rb_root *);
extern struct rb_node *rb_last(struct rb_root *);

/* Fast replacement of a single node without remove/rebalance/add/rebalance */
extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
			    struct rb_root *root);

static inline void rb_link_node(struct rb_node * node, struct rb_node * parent,
				struct rb_node ** rb_link)
{
	node->rb_parent_color = (unsigned long )parent;
	node->rb_left = node->rb_right = NULL;

	*rb_link = node;
}

#endif	/* _LINUX_RBTREE_H */

通过头文件的注释,老外已经非常友好地给出了一些示例代码。。那么接下来就是移植到我们stm32中了。
首先打开我们用的工程,创建一个Mylib目录,然后简单粗暴地,直接把我们的rbtree.c和rbtree.h直接丢进去。如果这时候我们直接点击编译的话,毫无疑问会产生一大堆的报错信息,我们先简单处理一下。首先是头文件的包含问题,将rbtree.h中 #include 修改为 #include 。然后点击编译,那么就会发现有些宏,我们是没有实现的。 rb_entry(ptr , type , member) 他封装了container_of,我们再将container_of 从u-boot的 common.h 中拷贝过来

/**
 * container_of - cast a member of a structure out to the containing structure
 * @ptr:	the pointer to the member.
 * @type:	the type of the container struct this is embedded in.
 * @member:	the name of the member within the struct.
 *
 */
#define container_of(ptr, type, member) ({			\
	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
	(type *)( (char *)__mptr - offsetof(type,member) );})

但是我们发现keil5中使用的是标准c关键字,typeof属于拓展关键字,是没有办法使用的。这里我们只能读懂这个宏是做什么用的,然后想个其他办法去代替他。
这里初步分析,他定义了一个*__mptr指针,他的类型是和member成员一样的,并指向了ptr。 紧接着使用了offsetof宏对member成员在type中的位置求得偏移量,再使用__mptr减去这个偏移量。那么这里的重点实际上并不在前面的typeof,而是在第三行的偏移。这样我们也可以通过一样的手段对他进行偏移,我们修改如下

#define container_of(ptr, type, member) ((type*)( ((int)ptr) - (int)(& (((type*)0)->member) )))

后段使用stm32 stddef.h中offsetof也是没有问题的

/* EDG uses __INTADDR__ to avoid errors when strict */
  #define offsetof(t, memb) ((__CLIBNS size_t)__INTADDR__(&(((t *)0)->memb)))

大部分工作实际上基本做完了,这里还是把代码贴出来

#ifndef	_RBTREES_H_
#define _RBTREES_H_
//#include "project.h"
#include 

/**
 * list_entry - get the struct for this entry
 * @ptr:	the &struct list_head pointer.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) \
	((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))

/**
 * container_of - cast a member of a structure out to the containing structure
 * @ptr:	the pointer to the member.
 * @type:	the type of the container struct this is embedded in.
 * @member:	the name of the member within the struct.
 *
 */
#undef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
	
//#define container_of(ptr, type, member) ({\
//	const typeof( ((type *)0)->member ) *__mptr = (ptr);\
//	(type *)( (char *)__mptr - offsetof(type,member) );})
	
// Keil5 not used GUN C . The typeof keyword not support. so make the following modifications ¡ý
#define container_of(ptr, type, member) ((type*)( ((int)ptr) - (int)(& (((type*)0)->member) )))


#define	rb_entry(ptr, type, member)	container_of(ptr, type, member)


struct rb_node
{
	unsigned long  rb_parent_color;
#define	RB_RED		0
#define	RB_BLACK	1
	struct rb_node *rb_right;
	struct rb_node *rb_left;
} __attribute__((aligned(sizeof(long))));
    /* The alignment might seem pointless, but allegedly CRIS needs it */

struct rb_root
{
	struct rb_node *rb_node;
};

#define rb_parent(r)   ((struct rb_node *)((r)->rb_parent_color & ~3))
#define rb_color(r)   ((r)->rb_parent_color & 1)
#define rb_is_red(r)   (!rb_color(r))
#define rb_is_black(r) rb_color(r)
#define rb_set_red(r)  do { (r)->rb_parent_color &= ~1; } while (0)
#define rb_set_black(r)  do { (r)->rb_parent_color |= 1; } while (0)

static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
{
	rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long)p;
}
static inline void rb_set_color(struct rb_node *rb, int color)
{
	rb->rb_parent_color = (rb->rb_parent_color & ~1) | color;
}

#define RB_ROOT	(struct rb_root) { NULL, }
#define	rb_entry(ptr, type, member) container_of(ptr, type, member)

#define RB_EMPTY_ROOT(root)	((root)->rb_node == NULL)
#define RB_EMPTY_NODE(node)	(rb_parent(node) == node)
#define RB_CLEAR_NODE(node)	(rb_set_parent(node, node))

extern void rb_insert_color(struct rb_node *, struct rb_root *);
extern void rb_erase(struct rb_node *, struct rb_root *);

/* Find logical next and previous nodes in a tree */
extern struct rb_node *rb_next(struct rb_node *);
extern struct rb_node *rb_prev(struct rb_node *);
extern struct rb_node *rb_first(struct rb_root *);
extern struct rb_node *rb_last(struct rb_root *);

/* Fast replacement of a single node without remove/rebalance/add/rebalance */
extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
			    struct rb_root *root);

static inline void rb_link_node(struct rb_node * node, struct rb_node * parent,
				struct rb_node ** rb_link)
{
	node->rb_parent_color = (unsigned long )parent;
	node->rb_left = node->rb_right = NULL;

	*rb_link = node;
}
#endif
/******************* (C) COPYRIGHT 2019 Doon****************END OF FILE****/

好了…那么库就基本算移植完了,接下来就是怎么生成这个棵树↓

struct dev_info{
	int addr;
};

typedef struct user_rb_s
{
    struct rb_node user_node;
    struct dev_info dev_info;
}user_rb_t;

/**
*@des: create a user node of rbtrees
*/
user_rb_t *create_user_node(struct dev_info *dev_info ){
	user_rb_t *node;
    node = (user_rb_t *)malloc(sizeof(user_rb_t));
    if(node == NULL)
        return node;

    memset(node, 0, sizeof(user_rb_t));
	memcpy((char *)&node->dev_info,dev_info,sizeof(struct dev_info));
    return node;
}

/**
*@des: insert a user node.
*/
int user_rb_insert( struct rb_root *root , struct dev_info *dev_info ){
	struct rb_node **new = &(root->rb_node);
	struct rb_node *parent = NULL;
    user_rb_t *goal_node = NULL;
    int res=0;
	
	find_addr = dev_info->mac
	while(*new){
		parent = *new;
		goal_node  = rb_entry( *new , user_rb_t , user_node );
		res = dev_info->addr - goal_node->addr
		
		if( res < 0 ){
			new = &(( *new )->rb_left);
		}else if( res > 0 ){
			new = &(( *new )->rb_right);
		}else{
			return 0;
		}
	}
	
	goal_node = create_user_node( dev_info );
	if( goal_node == NULL ){
		return -1;
	}
	
	//add new node
    rb_link_node( &goal_node->user_node , parent , new );
    //rebalance rbtree
    rb_insert_color( &goal_node->user_node , root );
	
	return 0;
}

/**
*@des: find the user node.
*/
struct dev_info *user_rb_find( struct rb_root *root ,int addr ){
	struct rb_node *node = root->rb_node;
	user_rb_t *goal_node = NULL;
	int res=0;
	
	while(node){
		goal_node = rb_entry( node , user_rb_t , user_node );
		res = ( addr - goal_node->addr  );
		if( res < 0 )
            node = node->rb_left;
        else if( res > 0 )
            node = node->rb_right;
        else
			return &goal_node->dev_info;
	}
	return NULL;
}

int user_rb_delete( struct rb_root *root , int addr ){
	user_rb_t *goal_node;
	// Here changed the return of rb find . so we should offset the struct
	goal_node = rb_entry( user_rb_find( root , addr ) , user_rb_t , user_node );
	if( goal_node != NULL ){
		rb_erase( &goal_node->user_node , root );
		myfree( SRAMIN , goal_node );
		return 0;
	}else{
		return -1;
	}
}

基本就可以使用了,因为没有带上硬件,这里没有办法给大家看仿真和程序是怎么走的,很久没有写博客,有点不知道怎么写了,前面感觉写得很啰嗦,后面就直接贴上代码了。这类树状结构在查询的时候效率还是相当高的,比起每次遍历,最大查询次数大大缩减了。

你可能感兴趣的:(stm32)