前言
OKHttp是Square公司辨析的一个网络请求框架,也是目前市面上使用最多的网络框架之一。OKHttp是基于HTTP协议封装的一套请求客户端,在请求底层支持连接同一个地址的链接共享同一个Socket。
OkHttp作为当前Android端最火热的网络请求框架之一,有很多的优点:
- 支持HTTP/2 协议,允许连接到同一个主机地址的所有请求共享Socket。可以有效管理网络连接以及提高连接复用率。
- 在HTTP/2协议不可用的情况下,通过连接池减少请求的延迟。
- GZip透明压缩减少传输的数据包大小。
- 缓存请求,避免同一个重复的网络请求。
这篇文章主要针对OKHttp的工作原理进行分析,着重介绍OKHttp实现的原理以及工作流程。
以下是基于OKHttp 3.9.x分析
OKHttp的工作原理
首先,我们先来看下OKHttp的使用。
OkHttpClient client = new OkHttpClient();//创建OkHttpClient对象
Request request = new Request.Builder()
.url(url)//请求链接
.build();//创建Request对象
Response response = client.newCall(request).execute();//获取Response对象
复制代码
以上代码是OKHttp的GET请求的同步请求用法。可以看到,第一步是创建OKHttpClient对象,然后创建Request,最后发起请求并获取请求结果Response。我们针对上面的请求流程开始分析OKHttp的工作原理。
从代码中可以看出,在使用OkHttp时需要先创建OkHttpClient对象。
public OkHttpClient() {
this(new Builder());
}
OkHttpClient(Builder builder) {
this.dispatcher = builder.dispatcher;
this.proxy = builder.proxy;
//......
this.connectTimeout = builder.connectTimeout;
this.readTimeout = builder.readTimeout;
this.writeTimeout = builder.writeTimeout;
this.pingInterval = builder.pingInterval;
}
复制代码
上面的代码就是OkHttpClient的构造方法。可以看到OkHttpClient有两个构造方法,在构造方法中我们可以看到会初始化一个Builder对象(OKHttp使用了建造者模式),根据构造方法的代码,很容易发现在构造方法中主要设置了一些OKHttp的属相。比如:超时设置、拦截器、HTTPS相关等。
接下来开始创建Request对象,Request描述了OkHttp将要发送的请求。比如:URL、HTTP header、请求类型(GET请求或者POST请求)等。
Request(Builder builder) {
this.url = builder.url;
this.method = builder.method;
this.headers = builder.headers.build();
this.body = builder.body;
this.tag = builder.tag != null ? builder.tag : this;
}
复制代码
可以看到Request也是通过建造者模式创建的,在这里配置了url、请求头等信息。
OKHttp的请求
在上面OKHttpClient和Request创建好之后,就开始发起HTTP请求了。OkHttp中请求方式分为同步请求(client.newCall(request).execute() )和异步请求(client.newCall(request).enqueue())两种,其中同步请求和一部请求的区别就是同步请求会阻塞当前线程,一部请求会放到线程池中执行。
public Call newCall(Request request) {
return RealCall.newRealCall(this, request, false /* for web socket */);
}
static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
// Safely publish the Call instance to the EventListener.
RealCall call = new RealCall(client, originalRequest, forWebSocket);
call.eventListener = client.eventListenerFactory().create(call);
return call;
}
复制代码
可以看到通过newCall()方法创建了RealCall实例,然后通过RealCall发起请求。接下来我们同步OkHttp的异步请求分析。异步请求调用了RealCall的enqueue()方法。
public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
复制代码
在这里,OkHttp通过调度器Dispatcher执行请求。
/**Dispatcher**/
synchronized void enqueue(AsyncCall call) {
//这里判断队列是否已满,队列不满怎将请求放到线程池中执行,否则加入到队列中
if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
runningAsyncCalls.add(call);
executorService().execute(call);
} else {
readyAsyncCalls.add(call);
}
}
复制代码
可以看到enqueue()方法是一个同步方法,在这里首先判断了请求队列是否已满,如果不满,则开始在线程池中执行请求AsyncCall。AsyncCall继承了NamedRunnable抽象类,而NamedRunnable继承了Runnable接口,在run方法中调用了execute()方法。
protected void execute() {
boolean signalledCallback = false;
try {
//通过责任链模式执行接下来请求任务
Response response = getResponseWithInterceptorChain();
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
//执行失败回调
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
//执行成功回调
responseCallback.onResponse(RealCall.this, response);
}
}
//......
finally {
client.dispatcher().finished(this);
}
}
复制代码
在这里开始了OkHttp核心的请求部分。在OkHttp中使用了责任链模式处理这一部分的请求。getResponseWithInterceptorChain()开始请求。
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
List interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors()); //自定义的拦截器
interceptors.add(retryAndFollowUpInterceptor); //重试拦截器,请求失败后重试
interceptors.add(new BridgeInterceptor(client.cookieJar())); //桥接拦截器,处理请求
interceptors.add(new CacheInterceptor(client.internalCache())); //缓存拦截器,处理请求缓存
interceptors.add(new ConnectInterceptor(client)); //连接拦截器,创建HTTP连接
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket)); //网络请求拦截器,开始网络请求
Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
originalRequest, this, eventListener, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
return chain.proceed(originalRequest);
}
复制代码
OkHttp的拦截器
在上面的代码中OkHttp通过各种拦截器处理请求。这里简单介绍下OkHttp的拦截器:
- 自定义拦截器:提供给用户的定制的拦截器。
- 重试拦截器(RetryAndFollowUpInterceptor):请求在失败的时候重新开始的拦截器。
- 桥接拦截器(BridgeInterceptor):主要用来构造请求。
- 缓存拦截器(CacheInterceptor):主要处理HTTP缓存。
- 连接拦截器(ConnectInterceptor):主要处理HTTP链接。
- 网络请求拦截器(CallServerInterceptor):负责发起网络请求。
拦截器是OkHttp发起请求的核心部分,接下来我们针对各种拦截器进行分析。上面的代码中,通过RealInterceptorChain的proceed()方法开始执行拦截器。
public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
RealConnection connection) throws IOException {
calls++;
RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
writeTimeout);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next); //执行拦截器
//......
return response;
}
复制代码
重试拦截器—RetryAndFollowUpInterceptor
这里我们直接分析RetryAndFollowUpInterceptor的intercept()方法。
public Response intercept(Chain chain) throws IOException {
//......
int followUpCount = 0;
Response priorResponse = null;
//通过一个循环来重新尝试请求
while (true) {
if (canceled) {
streamAllocation.release();
throw new IOException("Canceled");
}
Response response;
boolean releaseConnection = true;
try {
//1.调用下一个拦截器
response = realChain.proceed(request, streamAllocation, null, null);
releaseConnection = false;
} catch (RouteException e) {
//......
} catch (IOException e) {
//......
}
//......
//2.检测response是否合法
Request followUp = followUpRequest(response);
if (followUp == null) {
if (!forWebSocket) {
streamAllocation.release();
}
//3.返回response,请求完成
return response;
}
//最多尝试20次
if (++followUpCount > MAX_FOLLOW_UPS) {
streamAllocation.release();
throw new ProtocolException("Too many follow-up requests: " + followUpCount);
}
//4.重新设置请求
request = followUp;
priorResponse = response;
}
}
复制代码
在RetryAndFollowUpInterceptor中我们可以看到请求的重试是由一个无限循环保持的,同时在代码里还限制了请求的次数,最多尝试20次。RetryAndFollowUpInterceptor的具体逻辑是:
- 开启循环,继续调用下一个拦截器直到返回结果;
- 通过followUpRequest()方法检查response是否合法,检查逻辑是根据HTTP返回码检测(具体逻辑可以查看通过followUpRequest()方法)。如果合法followUp为null,则返回结果,否则进行下一步;
- 重新设置request,设置response(用于接下来重新构造response),执行第1步。
BridgeInterceptor
我们看看BridgeInterceptor做了哪些事。
public Response intercept(Chain chain) throws IOException {
Request userRequest = chain.request();
Request.Builder requestBuilder = userRequest.newBuilder();
RequestBody body = userRequest.body();
if (body != null) {
MediaType contentType = body.contentType();
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString());
}
long contentLength = body.contentLength();
if (contentLength != -1) {
requestBuilder.header("Content-Length", Long.toString(contentLength));
requestBuilder.removeHeader("Transfer-Encoding");
} else {
requestBuilder.header("Transfer-Encoding", "chunked");
requestBuilder.removeHeader("Content-Length");
}
}
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", hostHeader(userRequest.url(), false));
}
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive");
}
boolean transparentGzip = false;
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true;
requestBuilder.header("Accept-Encoding", "gzip");
}
List cookies = cookieJar.loadForRequest(userRequest.url());
if (!cookies.isEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies));
}
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", Version.userAgent());
}
Response networkResponse = chain.proceed(requestBuilder.build());
HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
Response.Builder responseBuilder = networkResponse.newBuilder()
.request(userRequest);
if (transparentGzip
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
&& HttpHeaders.hasBody(networkResponse)) {
GzipSource responseBody = new GzipSource(networkResponse.body().source());
Headers strippedHeaders = networkResponse.headers().newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build();
responseBuilder.headers(strippedHeaders);
String contentType = networkResponse.header("Content-Type");
responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
}
return responseBuilder.build();
}
复制代码
从代码里可以看到,在BridgeInterceptor中出了HTTP的请求头,设置了请求头的各种参数,比如:Content-Type、Connection、User-Agent、GZIP等。
CacheInterceptor
缓存拦截器主要是处理HTTP请求缓存的,通过缓存拦截器可以有效的使用缓存减少网络请求。
public Response intercept(Chain chain) throws IOException {
Response cacheCandidate = cache != null? cache.get(chain.request()): null;//1.取缓存
long now = System.currentTimeMillis();
CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get(); //2.验证缓存
Request networkRequest = strategy.networkRequest;
Response cacheResponse = strategy.cacheResponse; //获取缓存
if (cache != null) {
cache.trackResponse(strategy);
}
// If we're forbidden from using the network and the cache is insufficient, fail.
//这里表示禁止使用缓存
if (networkRequest == null && cacheResponse == null) {
return new Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(504)
.message("Unsatisfiable Request (only-if-cached)")
.body(Util.EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
}
// If we don't need the network, we're done.
//3.直接返回缓存
if (networkRequest == null) {
return cacheResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build();
}
Response networkResponse = null;
try {
//4.没有缓存,执行下一个拦截器
networkResponse = chain.proceed(networkRequest);
}
// If we have a cache response too, then we're doing a conditional get.
if (cacheResponse != null) {
if (networkResponse.code() == HTTP_NOT_MODIFIED) {
Response response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers(), networkResponse.headers()))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis())
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
networkResponse.body().close();
// Update the cache after combining headers but before stripping the
// Content-Encoding header (as performed by initContentStream()).
cache.trackConditionalCacheHit();
//5.更新缓存
cache.update(cacheResponse, response);
return response;
} else {
closeQuietly(cacheResponse.body());
}
}
//......
if (cache != null) {
if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
// Offer this request to the cache.
//6.保存缓存
CacheRequest cacheRequest = cache.put(response);
return cacheWritingResponse(cacheRequest, response);
}
}
return response;
}
复制代码
在上面的代码中可以看到,OkHttp首先会取出缓存,然后经过验证处理判断缓存是否可用。流程如下:
- 根据请求(以Request为键值)取出缓存;
- 验证缓存是否可用?可用,则直接返回缓存,否则进行下一步;
- 继续执行下一个拦截器,直到但会结果;
- 如果之前有缓存,则更新缓存,否则新增缓存。
缓存拦截器主要的工作就是处理缓存,知道了大致流程后,我们接下来分析一下OkHttp是如何管理缓存的。首先我们分析缓存如何获取,在代码中可以看到通过cache.get()得到,我们直接跟代码看。
final InternalCache internalCache = new InternalCache() {
@Override public Response get(Request request) throws IOException {
return Cache.this.get(request);
}
@Override public CacheRequest put(Response response) throws IOException {
return Cache.this.put(response);
}
@Override public void remove(Request request) throws IOException {
Cache.this.remove(request);
}
@Override public void update(Response cached, Response network) {
Cache.this.update(cached, network);
}
@Override public void trackConditionalCacheHit() {
Cache.this.trackConditionalCacheHit();
}
@Override public void trackResponse(CacheStrategy cacheStrategy) {
Cache.this.trackResponse(cacheStrategy);
}
};
复制代码
可以看到,缓存是通过InternalCache管理的,而InternalCache是Cache的内部了类,InternalCache又调用了Cache的方法。我们这里只分析一个get()方法。
@Nullable Response get(Request request) {
String key = key(request.url());
DiskLruCache.Snapshot snapshot;
Entry entry;
try {
snapshot = cache.get(key);
if (snapshot == null) {
return null;
}
} catch (IOException e) {
return null;
}
try {
entry = new Entry(snapshot.getSource(ENTRY_METADATA));
} catch (IOException e) {
Util.closeQuietly(snapshot);
return null;
}
Response response = entry.response(snapshot);
//......
return response;
}
复制代码
可以看到,缓存是通过DiskLruCache管理,那么不难看出OkHttp的缓存使用了LRU算法管理缓存。接下来,我们分析下OkHttp如何验证缓存。
在上面的代码中,缓存最终来自于CacheStrategy。我们直接分析下那里的代码。
private CacheStrategy getCandidate() {
// No cached response.
if (cacheResponse == null) {
//1.没有缓存,直接返回没有缓存
return new CacheStrategy(request, null);
}
if (request.isHttps() && cacheResponse.handshake() == null) {
//2.没有进行TLS握手,直接返回没有缓存
return new CacheStrategy(request, null);
}
if (!isCacheable(cacheResponse, request)) {
//3.判断是否是可用缓存。这里是根据cache-control的属性配置来判断的
return new CacheStrategy(request, null);
}
CacheControl requestCaching = request.cacheControl();
if (requestCaching.noCache() || hasConditions(request)) {
//4.cache-control:no-cache不接受缓存的资源;根据请求头的"If-Modified-Since"或者"If-None-Match"判断,这两个属性需要到服务端验证后才能判断是否使用缓存,所以这里先不使用缓存
return new CacheStrategy(request, null);
}
CacheControl responseCaching = cacheResponse.cacheControl();
if (responseCaching.immutable()) {
//5.cache-control:imutable 表示响应正文不会随时间而改变,这里直接使用缓存
return new CacheStrategy(null, cacheResponse);
}
long ageMillis = cacheResponseAge();
long freshMillis = computeFreshnessLifetime();
if (requestCaching.maxAgeSeconds() != -1) {
freshMillis = Math.min(freshMillis, SECONDS.toMillis(requestCaching.maxAgeSeconds()));
}
long minFreshMillis = 0;
if (requestCaching.minFreshSeconds() != -1) {
minFreshMillis = SECONDS.toMillis(requestCaching.minFreshSeconds());
}
long maxStaleMillis = 0;
if (!responseCaching.mustRevalidate() && requestCaching.maxStaleSeconds() != -1) {
maxStaleMillis = SECONDS.toMillis(requestCaching.maxStaleSeconds());
}
if (!responseCaching.noCache() && ageMillis + minFreshMillis < freshMillis + maxStaleMillis) {
Response.Builder builder = cacheResponse.newBuilder();
if (ageMillis + minFreshMillis >= freshMillis) {
builder.addHeader("Warning", "110 HttpURLConnection \"Response is stale\"");
}
long oneDayMillis = 24 * 60 * 60 * 1000L;
if (ageMillis > oneDayMillis && isFreshnessLifetimeHeuristic()) {
builder.addHeader("Warning", "113 HttpURLConnection \"Heuristic expiration\"");
}
//6.这里根据时间计算缓存是否过期,如果不过期就使用缓存
return new CacheStrategy(null, builder.build());
}
String conditionName;
String conditionValue;
if (etag != null) {
conditionName = "If-None-Match";
conditionValue = etag;
} else if (lastModified != null) {
conditionName = "If-Modified-Since";
conditionValue = lastModifiedString;
} else if (servedDate != null) {
conditionName = "If-Modified-Since";
conditionValue = servedDateString;
} else {
//7.没有缓存验证条件,需要请求服务端
return new CacheStrategy(request, null); // No condition! Make a regular request.
}
Headers.Builder conditionalRequestHeaders = request.headers().newBuilder();
Internal.instance.addLenient(conditionalRequestHeaders, conditionName, conditionValue);
Request conditionalRequest = request.newBuilder()
.headers(conditionalRequestHeaders.build())
.build();
//8.这里将上面的验证条件加入请求头,继续向服务端发起请求
return new CacheStrategy(conditionalRequest, cacheResponse);
}
复制代码
从上面的代码可以看到,OkHttp经过很多判断才能确定是否使用缓存。判断过程可以总结为:
- 没有缓存,直接返回没有缓存.
- HTTPS没有进行TLS握手,直接返回没有缓存.
- 判断是否是可用缓存。这里是根据cache-control的属性配置来判断的.
- cache-control:no-cache不接受缓存的资源;根据请求头的"If-Modified-Since"或者"If-None-Match"判断,这两个属性需要到服务端验证后才能判断是否使用缓存,所以这里先不使用缓存.
- cache-control:imutable 表示响应正文不会随时间而改变,这里直接使用缓存
- 这里根据时间计算缓存是否过期,如果不过期就使用缓存
- 没有缓存验证条件,需要请求服务端
- 将上面的验证条件("If-None-Match","If-Modified-Since")加入请求头,继续向服务端发起请求
在上面的验证过程中主要通过Cache-Control中的属性判断缓存是否可用,如果可用则直接返回缓存,否则像服务端继续发送请求判断缓存是否过期。
ConnectInterceptor
ConnectInterceptor的作用就是建立一个与服务端的连接。
public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
StreamAllocation streamAllocation = realChain.streamAllocation();
boolean doExtensiveHealthChecks = !request.method().equals("GET");
HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
RealConnection connection = streamAllocation.connection();
return realChain.proceed(request, streamAllocation, httpCodec, connection);
}
复制代码
在上面的代码中,可以看到连接来自于StreamAllocation的newStream()方法。
public HttpCodec newStream(
OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
int connectTimeout = chain.connectTimeoutMillis();
int readTimeout = chain.readTimeoutMillis();
int writeTimeout = chain.writeTimeoutMillis();
boolean connectionRetryEnabled = client.retryOnConnectionFailure();
try {
RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks);
HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);
synchronized (connectionPool) {
codec = resultCodec;
return resultCodec;
}
} catch (IOException e) {
throw new RouteException(e);
}
}
复制代码
可以看到在newStream()方法中会继续寻找连接。我们继续分析代码可以看到,OkHttp的连接是维护在一个连接池中的。
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
boolean connectionRetryEnabled) throws IOException {
boolean foundPooledConnection = false;
RealConnection result = null;
Route selectedRoute = null;
Connection releasedConnection;
Socket toClose;
synchronized (connectionPool) {
if (released) throw new IllegalStateException("released");
if (codec != null) throw new IllegalStateException("codec != null");
if (canceled) throw new IOException("Canceled");
// Attempt to use an already-allocated connection. We need to be careful here because our
// already-allocated connection may have been restricted from creating new streams.
releasedConnection = this.connection;
toClose = releaseIfNoNewStreams();
if (this.connection != null) {
// We had an already-allocated connection and it's good.
result = this.connection;
releasedConnection = null;
}
if (!reportedAcquired) {
// If the connection was never reported acquired, don't report it as released!
releasedConnection = null;
}
if (result == null) {
// Attempt to get a connection from the pool.
Internal.instance.get(connectionPool, address, this, null);
if (connection != null) {
foundPooledConnection = true;
result = connection;
} else {
selectedRoute = route;
}
}
}
closeQuietly(toClose);
if (releasedConnection != null) {
eventListener.connectionReleased(call, releasedConnection);
}
if (foundPooledConnection) {
eventListener.connectionAcquired(call, result);
}
if (result != null) {
// If we found an already-allocated or pooled connection, we're done.
return result;
}
// If we need a route selection, make one. This is a blocking operation.
boolean newRouteSelection = false;
if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
newRouteSelection = true;
routeSelection = routeSelector.next();
}
synchronized (connectionPool) {
if (canceled) throw new IOException("Canceled");
if (newRouteSelection) {
// Now that we have a set of IP addresses, make another attempt at getting a connection from
// the pool. This could match due to connection coalescing.
List routes = routeSelection.getAll();
for (int i = 0, size = routes.size(); i < size; i++) {
Route route = routes.get(i);
Internal.instance.get(connectionPool, address, this, route);
if (connection != null) {
foundPooledConnection = true;
result = connection;
this.route = route;
break;
}
}
}
if (!foundPooledConnection) {
if (selectedRoute == null) {
selectedRoute = routeSelection.next();
}
// Create a connection and assign it to this allocation immediately. This makes it possible
// for an asynchronous cancel() to interrupt the handshake we're about to do.
route = selectedRoute;
refusedStreamCount = 0;
result = new RealConnection(connectionPool, selectedRoute);
acquire(result, false);
}
}
// If we found a pooled connection on the 2nd time around, we're done.
if (foundPooledConnection) {
eventListener.connectionAcquired(call, result);
return result;
}
// Do TCP + TLS handshakes. This is a blocking operation.
result.connect(
connectTimeout, readTimeout, writeTimeout, connectionRetryEnabled, call, eventListener);
routeDatabase().connected(result.route());
Socket socket = null;
synchronized (connectionPool) {
reportedAcquired = true;
// Pool the connection.
Internal.instance.put(connectionPool, result);
// If another multiplexed connection to the same address was created concurrently, then
// release this connection and acquire that one.
if (result.isMultiplexed()) {
socket = Internal.instance.deduplicate(connectionPool, address, this);
result = connection;
}
}
closeQuietly(socket);
eventListener.connectionAcquired(call, result);
return result;
}
复制代码
以上是OkHttp获取连接的主要逻辑,方法比较复杂,我们这里总结一下获取连接的流程,具体的细节可以自行查看。
- 首先会尝试从连接池中获取一个连接,获取连接的参数是地址。如果获取到连接,则返回,否则进行下一步;
- 如果需要选择线路,则继续尝试获取连接。如果获取到连接,则返回,否则进行下一步;
- 创建一个新的连接,然后建立与服务端的TCP连接。
- 将连接加入连接池。
CallServerInterceptor
CallServerInterceptor是最后一个拦截器,理所当然这个拦截器负责向服务端发送数据。
public Response intercept(Chain chain) throws IOException {
//......
//写入请求头数据
httpCodec.writeRequestHeaders(request);
realChain.eventListener().requestHeadersEnd(realChain.call(), request);
Response.Builder responseBuilder = null;
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
//......
if (responseBuilder == null) {
// Write the request body if the "Expect: 100-continue" expectation was met.
realChain.eventListener().requestBodyStart(realChain.call());
long contentLength = request.body().contentLength();
//这里写入请求体
CountingSink requestBodyOut =
new CountingSink(httpCodec.createRequestBody(request, contentLength));
BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
realChain.eventListener()
.requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
} else if (!connection.isMultiplexed()) {
streamAllocation.noNewStreams();
}
}
//完成请求
httpCodec.finishRequest();
if (responseBuilder == null) {
//这里请求返回,读取返回请求头
realChain.eventListener().responseHeadersStart(realChain.call());
responseBuilder = httpCodec.readResponseHeaders(false);
}
Response response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
realChain.eventListener()
.responseHeadersEnd(realChain.call(), response);
int code = response.code();
if (forWebSocket && code == 101) {
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
//读取返回内容
response = response.newBuilder()
.body(httpCodec.openResponseBody(response))
.build();
}
//......
return response;
}
复制代码
在上面的代码上可以看到主要是由HttpCodec执行的数据写入以及读取。HttpCodec是一个接口,它实现有两个类,分别是Http1Codec(处理HTTP1.1请求)和Http2Codec(处理HTTP2请求)。在HttpCodec的实现中主要通过okio与服务端通信。在上一节的ConnectInterceptor我们知道,OkHttp与服务端建立了一个TCP连接,所以客户端的与服务端的通信是直接通过TCP协议层的,当数据返回时,OkHttp会将数据构造HTTP形式的数据。
总结
OkHttp的工作原理就分析到这里了。在上面的文章中,首先分析了OkHttp在发起请求的准备阶段工作,构造OkHttpClient以及Request,然后通过调度器Dispatcher处理请求任务(请求又分为同步请求和异步请求)。最后通过拦截器处理请求。拦截器作为OkHttp中处理请求的核心部分,我们再文章中对各种拦截器都进行了分型,当然其中还有很多细节没有讲到,感兴趣的同学可以更加深入的去了解。