Task04:基于深度学习的文本分类1

与传统机器学习不同,深度学习既提供特征提取功能,也可以完成分类的功能。从本章开始我们将学习如何使用深度学习来完成文本表示。

文本表示方法 Part2

现有文本表示方法的缺陷

在上一章节,我们介绍几种文本表示方法:

  • One-hot
  • Bag of Words
  • N-gram
  • TF-IDF
    也通过sklean进行了相应的实践,相信你也有了初步的认知。但上述方法都或多或少存在一定的问题:转换得到的向量维度很高,需要较长的训练实践;没有考虑单词与单词之间的关系,只是进行了统计。

与这些表示方法不同,深度学习也可以用于文本表示,还可以将其映射到一个低纬空间。其中比较典型的例子有:FastText、Word2Vec和Bert。在本章我们将介绍FastText,将在后面的内容介绍Word2Vec和Bert。

你可能感兴趣的:(Task04:基于深度学习的文本分类1)