分片查询(sharding-jdbc)以及常见问题解决

新公司使用了自动分库分表的插件(sharding-jdbc),由于有多个数据源,所以结合了durid框架,作为数据库链接管理框架。

Sharding jdbc

​Sharding-JDBC是一个开源的分布式数据库中间件,它无需额外部署和依赖,完全兼容JDBC和各种ORM框架。Sharding-JDBC作为面向开发的微服务云原生基础类库,完整的实现了分库分表、读写分离和分布式主键功能,并初步实现了柔性事务。

研究了一天具体的运行的流程,自己实现了个小demo
项目用的是springboot 2.0+ 、mybaties 、durid
项目地址:https://github.com/zz790609619/LeetCodeRecord.git

一、准备工作

由于是分库分表,所以新建三个库user_1,user_2,user_3,在各个数据库分别插入30个表
user_pay_order_0 ----> user_pay_order_29
建表语句如下:

CREATE TABLE IF NOT EXISTS user_pay_order (order_id INT NOT NULL, user_id INT NOT NULL, status VARCHAR(50), PRIMARY KEY (order_id))

二、项目配置

项目的基本配置(pom.xml)


<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0modelVersion>
	<parent>
		<groupId>org.springframework.bootgroupId>
		<artifactId>spring-boot-starter-parentartifactId>
		<version>2.1.7.RELEASEversion>
		<relativePath/> 
	parent>
	<groupId>com.examplegroupId>
	<artifactId>demoartifactId>
	<version>0.0.1-SNAPSHOTversion>
	<packaging>warpackaging>
	<name>demoname>
	<description>Demo project for Spring Bootdescription>

	<properties>
		<java.version>1.8java.version>
	properties>

	<dependencies>
		<dependency>
			<groupId>org.springframework.bootgroupId>
			<artifactId>spring-boot-starter-webartifactId>
		dependency>
		<dependency>
			<groupId>org.springframework.bootgroupId>
			<artifactId>spring-boot-starter-testartifactId>
			<scope>testscope>
		dependency>

		<dependency>
			<groupId>com.alibabagroupId>
			<artifactId>fastjsonartifactId>
			<version>1.2.47version>
		dependency>
		
		<dependency>
			<groupId>com.alibabagroupId>
			<artifactId>druidartifactId>
			<version>1.1.14version>
		dependency>
		
		<dependency>
			<groupId>org.apache.shardingspheregroupId>
			<artifactId>sharding-jdbc-spring-boot-starterartifactId>
			<version>4.0.0-RC1version>
		dependency>

		<dependency>
			<groupId>org.springframeworkgroupId>
			<artifactId>spring-webartifactId>
			<version>5.1.6.RELEASEversion>
		dependency>
		<dependency>
			<groupId>org.mybatis.spring.bootgroupId>
			<artifactId>mybatis-spring-boot-starterartifactId>
			<version>2.0.0version>
		dependency>
		
		<dependency>
			<groupId>org.springframework.bootgroupId>
			<artifactId>spring-boot-starter-jta-atomikosartifactId>
		dependency>
		
		<dependency>
			<groupId>mysqlgroupId>
			<artifactId>mysql-connector-javaartifactId>
			<version>8.0.11version>

		dependency>
	dependencies>


	<build>
		<plugins>
			<plugin>
				<groupId>org.springframework.bootgroupId>
				<artifactId>spring-boot-maven-pluginartifactId>
			plugin>
		plugins>
	build>

project>

三、流程

分片查询(sharding-jdbc)以及常见问题解决_第1张图片

四、具体实现代码

1.配置多数据源的参数(application.yml)
server:
    port: 8090 #端口
spring:
    datasource: #主数据源
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://127.0.0.1:3306/game?useSSL=false&characterEncoding=utf8&serverTimezone=Asia/Shanghai
        username: root
        password: 123456
        initialSize: 5
        minIdle: 1
        maxActive: 50
        maxWait: 60000
        timeBetweenEvictionRunsMillis: 60000
        minEvictableIdleTimeMillis: 300000
        filters: stat,wall
    user: #分库后每个库的数据源
        datasource:
            ds0:
                type: com.alibaba.druid.pool.DruidDataSource
                driverClassName: com.mysql.cj.jdbc.Driver
                url: jdbc:mysql://127.0.0.1:3306/user_0?useSSL=false&characterEncoding=utf8&serverTimezone=Asia/Shanghai
                username: root
                password: 123456
            ds1:
                type: com.alibaba.druid.pool.DruidDataSource
                driverClassName: com.mysql.cj.jdbc.Driver
                url: jdbc:mysql://127.0.0.1:3306/user_1?useSSL=false&characterEncoding=utf8&serverTimezone=Asia/Shanghai
                username: root
                password: 123456
            ds2:
                type: com.alibaba.druid.pool.DruidDataSource
                driverClassName: com.mysql.cj.jdbc.Driver
                url: jdbc:mysql://127.0.0.1:3306/user_2?useSSL=false&characterEncoding=utf8&serverTimezone=Asia/Shanghai
                username: root
                password: 123456

mybatis:
    mapper-locations: classpath:mapper/*.xml


2.主数据源配置(没有分库分表的)

注意点:
@Primary 必须配置 不然会报错
@MapperScan 扫描的mapper都将使用当前数据源

/**
 * @Author ww
 * @Date 2020-04-22
 */
@Configuration
@MapperScan(basePackages = {"com.example.demo.data.mapper.main"}, sqlSessionFactoryRef = "apiMainSqlSessionFactory")
public class MainDataSourceConfig {
	

	//@Primary 标识主数据源
    @Bean(name = "dataSource")
    @Primary
    public DataSource apiMainDataSource() {
    	
        //druid数据库连接配置
        DruidXADataSource druidDataSource = new DruidXADataSource();
        druidDataSource.setUrl(url);
        druidDataSource.setUsername(userName);
        druidDataSource.setPassword(password);
        druidDataSource.setDriverClassName(driverClassName);
        druidDataSource.setInitialSize(initialSize);
        druidDataSource.setMaxActive(maxActive);
        druidDataSource.setMinIdle(minIdle);
        druidDataSource.setMaxWait(maxWait);
        druidDataSource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
        druidDataSource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
        try {
            druidDataSource.setFilters(filters);
        } catch (SQLException e) {
            e.printStackTrace();
        }

		//分布式数据源配置
        AtomikosDataSourceBean sourceBean = new AtomikosDataSourceBean();
        sourceBean.setXaDataSource(druidDataSource);
        sourceBean.setMaxPoolSize(maxActive);
        sourceBean.setUniqueResourceName("main0");
        return sourceBean;
    }

	//@Qualifier("dataSource")  特指当前上面分布式数据源
    @Bean(name = "apiMainSqlSessionFactory")
    public SqlSessionFactory sqlSessionFactoryBean(@Qualifier("dataSource") DataSource dataSource) throws Exception {
        SqlSessionFactoryBean sqlSessionFactoryBean = new SqlSessionFactoryBean();
        sqlSessionFactoryBean.setDataSource(dataSource);
        PathMatchingResourcePatternResolver resolver = new PathMatchingResourcePatternResolver();
        sqlSessionFactoryBean.setMapperLocations(resolver
                .getResources("classpath:mapper/*.xml"));
        //SqlMonitorInterceptor 拦截sql查询语句 替换参数 
        sqlSessionFactoryBean.setPlugins(new Interceptor[]{new SqlMonitorInterceptor()});
        return sqlSessionFactoryBean.getObject();
    }
    
	//@Value 获取刚刚yml配置文件中主数据源的参数
    @Value("${spring.datasource.type}")
    private String type;

    @Value("${spring.datasource.driverClassName}")
    private String driverClassName;

    @Value("${spring.datasource.url}")
    private String url;

    @Value("${spring.datasource.username}")
    private String userName;

    @Value("${spring.datasource.password}")
    private String password;

    @Value("${spring.datasource.initialSize}")
    private Integer initialSize;

    @Value("${spring.datasource.maxActive}")
    private Integer maxActive;

    @Value("${spring.datasource.minIdle}")
    private Integer minIdle;

    @Value("${spring.datasource.maxWait}")
    private Long maxWait;

    @Value("${spring.datasource.timeBetweenEvictionRunsMillis}")
    private Long timeBetweenEvictionRunsMillis;

    @Value("${spring.datasource.minEvictableIdleTimeMillis}")
    private Long minEvictableIdleTimeMillis;

    @Value("${spring.datasource.filters}")
    private String filters;
}

SqlMonitorInterceptor 拦截器

package com.example.demo.config.plugin;//
@Intercepts({@Signature(
        args = {MappedStatement.class, Object.class},
        method = "update",
        type = Executor.class
), @Signature(
        args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class},
        method = "query",
        type = Executor.class
), @Signature(
        args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class, CacheKey.class, BoundSql.class},
        method = "query",
        type = Executor.class
)})
public class SqlMonitorInterceptor implements Interceptor {
    public SqlMonitorInterceptor() {
    }
    /**
    * 将责任链的内的sql,替换参数 查询sql
    **/
    public Object intercept(Invocation invocation) throws Throwable {
        String classname = "";
        String method = "";
        String sql = "";
        String sql_param = "";
        long duration = -1L;
        long beginTime = System.currentTimeMillis();

        try {
            MappedStatement mappedStatement = (MappedStatement)invocation.getArgs()[0];
            String[] strArr = mappedStatement.getId().split("\\.");
            classname = strArr[strArr.length - 2];
            method = strArr[strArr.length - 1];
            Object parameter = null;
            if (invocation.getArgs().length > 1) {
                parameter = invocation.getArgs()[1];
            }

            BoundSql boundSql = mappedStatement.getBoundSql(parameter);
            sql = boundSql.getSql();
            sql_param = JSON.toJSONString(parameter);
        } catch (Exception var14) {
            var14.printStackTrace();
        }

        Object returnObj = invocation.proceed();
        long endTime = System.currentTimeMillis();
        duration = endTime - beginTime;
        return returnObj;
    }

    public String showSql(Configuration configuration, BoundSql boundSql) {
        Object parameterObject = boundSql.getParameterObject();
        List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
        String sql = boundSql.getSql().replaceAll("[\\s]+", " ");
        if (parameterMappings.size() > 0 && parameterObject != null) {
            TypeHandlerRegistry typeHandlerRegistry = configuration.getTypeHandlerRegistry();
            if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
                sql = sql.replaceFirst("\\?", this.getParameterValue(parameterObject));
            } else {
                MetaObject metaObject = configuration.newMetaObject(parameterObject);
                Iterator var8 = parameterMappings.iterator();

                while(var8.hasNext()) {
                    ParameterMapping parameterMapping = (ParameterMapping)var8.next();
                    String propertyName = parameterMapping.getProperty();
                    Object obj;
                    if (metaObject.hasGetter(propertyName)) {
                        obj = metaObject.getValue(propertyName);
                        sql = sql.replaceFirst("\\?", this.getParameterValue(obj));
                    } else if (boundSql.hasAdditionalParameter(propertyName)) {
                        obj = boundSql.getAdditionalParameter(propertyName);
                        sql = sql.replaceFirst("\\?", this.getParameterValue(obj));
                    }
                }
            }
        }

        return sql;
    }

    private String getParameterValue(Object obj) {
        String value = null;
        if (obj instanceof String) {
            value = "'" + obj.toString() + "'";
        } else if (obj instanceof Date) {
            DateFormat formatter = DateFormat.getDateTimeInstance(2, 2, Locale.CHINA);
            value = "'" + formatter.format(new Date()) + "'";
        } else if (obj != null) {
            value = obj.toString();
        } else {
            value = "";
        }

        return value;
    }

    public Object plugin(Object target) {
        return target instanceof Executor ? Plugin.wrap(target, this) : target;
    }

    public void setProperties(Properties properties) {
    }
}

3.分库分表数据源配置

配置三个数据源的信息

package com.example.demo.config;

import com.alibaba.druid.pool.xa.DruidXADataSource;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.jta.atomikos.AtomikosDataSourceBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import javax.sql.DataSource;
import java.sql.SQLException;

/**
 * @Author ww
 * @Date 2020-04-22
 */
@Configuration
public class UserDataSourceConfig {

    @Bean(name = "shardingdsDataSource")
    public DataSource shardingDataSource() {
        AtomikosDataSourceBean sourceBean = new AtomikosDataSourceBean();
        DruidXADataSource druidDataSource = new DruidXADataSource();
        druidDataSource.setUrl(url);
        druidDataSource.setUsername(userName);
        druidDataSource.setPassword(password);
        druidDataSource.setDriverClassName(driverClassName);

        druidDataSource.setInitialSize(initialSize);
        druidDataSource.setMaxActive(maxActive);
        druidDataSource.setMinIdle(minIdle);
        druidDataSource.setMaxWait(maxWait);
        druidDataSource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
        druidDataSource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);

        try {
            druidDataSource.setFilters(filters);
        } catch (SQLException e) {
            e.printStackTrace();
        }

        sourceBean.setXaDataSource(druidDataSource);
        sourceBean.setUniqueResourceName("ds0");
        sourceBean.setMaxPoolSize(maxActive);
        return sourceBean;
    }

    @Bean(name = "shardingOneDataSource")
    public DataSource shardingOneDataSource() {
        AtomikosDataSourceBean sourceBean = new AtomikosDataSourceBean();
        DruidXADataSource druidDataSource = new DruidXADataSource();
        druidDataSource.setUrl(urlOne);
        druidDataSource.setUsername(userNameOne);
        druidDataSource.setPassword(passwordOne);
        druidDataSource.setDriverClassName(driverClassNameOne);

        druidDataSource.setInitialSize(initialSize);
        druidDataSource.setMaxActive(maxActive);
        druidDataSource.setMinIdle(minIdle);
        druidDataSource.setMaxWait(maxWait);
        druidDataSource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
        druidDataSource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
        try {
            druidDataSource.setFilters(filters);
        } catch (SQLException e) {
            e.printStackTrace();
        }
        sourceBean.setXaDataSource(druidDataSource);
        sourceBean.setMaxPoolSize(maxActive);
        sourceBean.setUniqueResourceName("ds1");

        return sourceBean;
    }

    @Bean(name = "shardingTwoDataSource")
    public DataSource shardingTwoDataSource() {
        AtomikosDataSourceBean sourceBean = new AtomikosDataSourceBean();
        DruidXADataSource druidDataSource = new DruidXADataSource();
        druidDataSource.setUrl(urlTwo);
        druidDataSource.setUsername(userNameTwo);
        druidDataSource.setPassword(passwordTwo);
        druidDataSource.setDriverClassName(driverClassNameTwo);

        druidDataSource.setInitialSize(initialSize);
        druidDataSource.setMaxActive(maxActive);
        druidDataSource.setMinIdle(minIdle);
        druidDataSource.setMaxWait(maxWait);
        druidDataSource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
        druidDataSource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
        try {
            druidDataSource.setFilters(filters);
        } catch (SQLException e) {
            e.printStackTrace();
        }

        sourceBean.setXaDataSource(druidDataSource);
        sourceBean.setMaxPoolSize(maxActive);
        sourceBean.setUniqueResourceName("ds2");
        return sourceBean;
    }

	//三个分库的数据源配置
    @Value("${spring.user.datasource.ds0.type}")
    private String type;

    @Value("${spring.user.datasource.ds0.driver-class-name}")
    private String driverClassName;

    @Value("${spring.user.datasource.ds0.url}")
    private String url;

    @Value("${spring.user.datasource.ds0.username}")
    private String userName;

    @Value("${spring.user.datasource.ds0.password}")
    private String password;

    @Value("${spring.user.datasource.ds1.type}")
    private String typeOne;

    @Value("${spring.user.datasource.ds1.driver-class-name}")
    private String driverClassNameOne;

    @Value("${spring.user.datasource.ds1.url}")
    private String urlOne;

    @Value("${spring.user.datasource.ds1.username}")
    private String userNameOne;

    @Value("${spring.user.datasource.ds1.password}")
    private String passwordOne;

    @Value("${spring.user.datasource.ds2.type}")
    private String typeTwo;

    @Value("${spring.user.datasource.ds2.driver-class-name}")
    private String driverClassNameTwo;

    @Value("${spring.user.datasource.ds2.url}")
    private String urlTwo;

    @Value("${spring.user.datasource.ds2.username}")
    private String userNameTwo;

    @Value("${spring.user.datasource.ds2.password}")
    private String passwordTwo;


    @Value("${spring.datasource.initialSize}")
    private Integer initialSize;

    @Value("${spring.datasource.maxActive}")
    private Integer maxActive;

    @Value("${spring.datasource.minIdle}")
    private Integer minIdle;

    @Value("${spring.datasource.maxWait}")
    private Long maxWait;

    @Value("${spring.datasource.timeBetweenEvictionRunsMillis}")
    private Long timeBetweenEvictionRunsMillis;

    @Value("${spring.datasource.minEvictableIdleTimeMillis}")
    private Long minEvictableIdleTimeMillis;

    @Value("${spring.datasource.filters}")
    private String filters;
}

将三个数据源装载在分片数据源工厂里

/**
 * @Author ww
 * @Date 2020-04-22
 */
@Component
public class ShardingDataSourceConfig {
	//最后返回的由 分片数据工厂ShardingDataSourceFactory 生产的DataSource 
    private DataSource shardingDataSource;
    //前面配置的三个分库的数据源
    @Resource(name = "shardingdsDataSource")
    private DataSource shardingdsDataSource;
    @Resource(name = "shardingOneDataSource")
    private DataSource shardingOneDataSource;
    @Resource(name = "shardingTwoDataSource")
    private DataSource shardingTwoDataSource;
    //在当前类被依赖注入(@autowired)后执行的方法。
    @PostConstruct
    public void init() throws SQLException {
    	//将三个数据源放在map中
        Map<String ,DataSource> dataSourceMap = new HashMap<>();
        dataSourceMap.put("ds0",shardingdsDataSource);
        dataSourceMap.put("ds1",shardingOneDataSource);
        dataSourceMap.put("ds2",shardingTwoDataSource);
        //
        /**
         *     新建分片规则配置类 参数任意选
         * 	   public final class ShardingRuleConfiguration {
         *     //默认数据源名称
         *     private String defaultDataSourceName;
         *     //表规则配置
         *     private Collection tableRuleConfigs = new LinkedList<>();
         *     //相同表分片规则的组,如果表分片规则相同,则可以放在一个组里。
         *     private Collection bindingTableGroups = new LinkedList<>();
         *     //默认数据库的分片算法配置
         *     private ShardingStrategyConfiguration defaultDatabaseShardingStrategyConfig;
         *     //默认表的分片算法配置
         *     private ShardingStrategyConfiguration defaultTableShardingStrategyConfig;
         *     //默认键的生成工具类
         *     private KeyGenerator defaultKeyGenerator;
         *     //主备配置信息
         *     private Collection masterSlaveRuleConfigs = new LinkedList<>();
         * }
         */
        ShardingRuleConfiguration shardingRuleConfiguration = new ShardingRuleConfiguration();
        //相同表分片规则的组,如果表分片规则相同,则可以放在一个组里
        shardingRuleConfiguration.getBindingTableGroups().addAll(Arrays.asList(
                "user_pay_order"
        ));

		//表规则配置
        List<TableRuleConfiguration> tableRuleConfigurationList = new ArrayList<>();
         /**
         *     //逻辑表名
         *     private String logicTable;    
         *     //真实的数据节点名称
         *     private String actualDataNodes;  
         *     //数据库分片算法配置
         *     private ShardingStrategyConfiguration databaseShardingStrategyConfig;
         *     //表分片算法配置
         *     private ShardingStrategyConfiguration tableShardingStrategyConfig;
         *     //自动生成键的名称
         *     private String keyGeneratorColumnName;
         *     //自动生成键的工具类
         *     private KeyGenerator keyGenerator;
         *
         *     private String logicIndex;
         */
          // param1 : 逻辑表名, param2 : 真实存在的节点,由数据源 + 表明组成, ds${0..1} 代表 数据库选择 ds 后缀为 0 - 2 之间,user_pay_order_ 代表数据表 user_pay_order_ 后缀 0 - 1 之间
        TableRuleConfiguration tableRuleConfiguration =  new TableRuleConfiguration("user_pay_order","ds${0..2}.user_pay_order_${0..29}");
        //表分片算法配置
        tableRuleConfiguration.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("user_pay_id",new ShardingAlgorithmLong()));
        //数据库分片算法配置
        tableRuleConfiguration.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("user_pay_id",new UserPayOrderDataSourceAlgo()));
        tableRuleConfigurationList.add(tableRuleConfiguration);
        // 配置分片规则
        shardingRuleConfiguration.getTableRuleConfigs().addAll(tableRuleConfigurationList);
        shardingDataSource =  ShardingDataSourceFactory.createDataSource(dataSourceMap,shardingRuleConfiguration,new Properties());
    }

    public DataSource getDataSource() {
        return shardingDataSource;
    }
}
4.分片算法

精确分片算法
对应PreciseShardingAlgorithm,用于处理使用单一键作为分片键的=与IN进行分片的场景。需要配合StandardShardingStrategy使用。

范围分片算法
对应RangeShardingAlgorithm,用于处理使用单一键作为分片键的BETWEEN AND进行分片的场景。需要配合StandardShardingStrategy使用。

复合分片算法
对应ComplexKeysShardingAlgorithm,用于处理使用多键作为分片键进行分片的场景,包含多个分片键的逻辑较复杂,需要应用开发者自行处理其中的复杂度。需要配合ComplexShardingStrategy使用。

Hint分片算法
对应HintShardingAlgorithm,用于处理使用Hint行分片的场景。需要配合HintShardingStrategy使用。

分库算法UserPayOrderDataSourceAlgo 使用的是精确分片算法

/**
 * @Author ww
 * @Date 2020-04-22
 */
public class UserPayOrderDataSourceAlgo implements PreciseShardingAlgorithm<Long> {
    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) {

        int postfix = (int)((shardingValue.getValue() / 30) % availableTargetNames.size());
        for (String dataSource : availableTargetNames) {
            if (dataSource.endsWith(String.valueOf(postfix))) {
                return dataSource;
            }
        }
        throw new IllegalArgumentException();
    }

}

分表算法 ShardingAlgorithmLong

/**
 * @Author ww
 * @Date 2020-04-22
 */
public class ShardingAlgorithmLong implements PreciseShardingAlgorithm<Long> {
    @Override
    public String doSharding(Collection<String> collection, PreciseShardingValue<Long> preciseShardingValue) {
        String postfix = "" +(preciseShardingValue.getValue() % collection.size());
        for (String tableName : collection){
            if(tableName.endsWith(postfix)){
                return tableName;
            }
        }
        throw new IllegalArgumentException("没有匹配到id:"+preciseShardingValue.getValue());
    }
}
5.将前面的数据源 适配到对应的mapper分类中,使用该mapper中自动会去用到分片查询
@Configuration
@MapperScan(basePackages = {"com.example.demo.data.mapper.user"}, sqlSessionFactoryRef = "sqlSessionFactory")
public class ShardingMybatisConfig {

    @Autowired
    private ShardingDataSourceConfig dataSourceConfig;

    @Bean(name = "sqlSessionFactory")
    public SqlSessionFactory sqlSessionFactory(@Qualifier("dataSource") DataSource dataSource) throws Exception {
        SqlSessionFactoryBean sqlSessionFactoryBean = new SqlSessionFactoryBean();
        sqlSessionFactoryBean.setDataSource(dataSourceConfig.getDataSource());
        PathMatchingResourcePatternResolver resolver = new PathMatchingResourcePatternResolver();
        sqlSessionFactoryBean.setMapperLocations(resolver
                .getResources("classpath:mapper/*.xml"));
        sqlSessionFactoryBean.setPlugins(new Interceptor[]{new UserPayOrderSqlInterceptor()});
        return sqlSessionFactoryBean.getObject();
    }

}

6.sql重写 责任链模式 sqlSession增加一个plugn过滤

Mybatis采用责任链模式,通过动态代理组织多个拦截器(插件),通过这些拦截器可以改变Mybatis的默认行为(诸如SQL重写之类的)

/**
 * 这是个临时的补救类,主要解决UserPayOrder根据主键进行查询的问题(分片查询) 没有也可以
 */
@Intercepts({@Signature(
        args = {MappedStatement.class, Object.class},
        method = "update",
        type = Executor.class
), @Signature(
        args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class},
        method = "query",
        type = Executor.class
), @Signature(
        args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class, CacheKey.class, BoundSql.class},
        method = "query",
        type = Executor.class
)})
public class UserPayOrderSqlInterceptor implements Interceptor {
	//Object intercept(Invocation invocation)是实现拦截逻辑的地方,内部要通过invocation.proceed()显式地推进责任链前进,也就是调用下一个拦截器拦截目标方法
    public Object intercept(Invocation invocation) throws Throwable {
        String classname = "";
        String method = "";
        String sql = "";
        String sql_param = "";
        long duration = -1L;
        long beginTime = System.currentTimeMillis();

        try {
            MappedStatement mappedStatement = (MappedStatement)invocation.getArgs()[0];
            String[] strArr = mappedStatement.getId().split("\\.");
            classname = strArr[strArr.length - 2];
            method = strArr[strArr.length - 1];
            Object parameter = null;
            if (invocation.getArgs().length > 1) {
                parameter = invocation.getArgs()[1];
            }

            BoundSql boundSql = mappedStatement.getBoundSql(parameter);
            sql = boundSql.getSql();
            sql_param = JSON.toJSONString(parameter);

            if(classname.equals("UserPayOrderMapper") && method.equals("selectByPrimaryKey")){
                String user_pay_id=parameter.toString().split("_")[1];
                sql=sql+" and user_pay_id="+user_pay_id;
                System.out.println("newsql: "+sql);
                modify(boundSql,"sql",sql);
            }
        } catch (Exception var14) {
            var14.printStackTrace();
        }

        Object returnObj = invocation.proceed();
        long endTime = System.currentTimeMillis();
        duration = endTime - beginTime;
        return returnObj;
    }

    public String showSql(Configuration configuration, BoundSql boundSql) {
        Object parameterObject = boundSql.getParameterObject();
        List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
        String sql = boundSql.getSql().replaceAll("[\\s]+", " ");
        if (parameterMappings.size() > 0 && parameterObject != null) {
            TypeHandlerRegistry typeHandlerRegistry = configuration.getTypeHandlerRegistry();
            if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
                sql = sql.replaceFirst("\\?", this.getParameterValue(parameterObject));
            } else {
                MetaObject metaObject = configuration.newMetaObject(parameterObject);
                Iterator var8 = parameterMappings.iterator();

                while(var8.hasNext()) {
                    ParameterMapping parameterMapping = (ParameterMapping)var8.next();
                    String propertyName = parameterMapping.getProperty();
                    Object obj;
                    if (metaObject.hasGetter(propertyName)) {
                        obj = metaObject.getValue(propertyName);
                        sql = sql.replaceFirst("\\?", this.getParameterValue(obj));
                    } else if (boundSql.hasAdditionalParameter(propertyName)) {
                        obj = boundSql.getAdditionalParameter(propertyName);
                        sql = sql.replaceFirst("\\?", this.getParameterValue(obj));
                    }
                }
            }
        }

        return sql;
    }


    private static void modify(Object object, String fieldName, Object newFieldValue){
        try {
            Field field = object.getClass().getDeclaredField(fieldName);
            Field modifiersField = Field.class.getDeclaredField("modifiers");
            modifiersField.setAccessible(true);
            modifiersField.setInt(field, field.getModifiers() & Modifier.FINAL);
            if(!field.isAccessible()) {
                field.setAccessible(true);
            }
            field.set(object, newFieldValue);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }


    private String getParameterValue(Object obj) {
        String value = null;
        if (obj instanceof String) {
            value = "'" + obj.toString() + "'";
        } else if (obj instanceof Date) {
            DateFormat formatter = DateFormat.getDateTimeInstance(2, 2, Locale.CHINA);
            value = "'" + formatter.format(new Date()) + "'";
        } else if (obj != null) {
            value = obj.toString();
        } else {
            value = "";
        }

        return value;
    }
    //Object plugin(Object target) 就是用当前这个拦截器生成对目标target的代理,实际是通过Plugin.wrap(target,this) 来完成的,把目标target和拦截器this传给了包装函数
    public Object plugin(Object target) {
        return target instanceof Executor ? Plugin.wrap(target, this) : target;
    }
	//setProperties(Properties properties)用于设置额外的参数,参数配置在拦截器的Properties节点里
    public void setProperties(Properties properties) {
    }
}

7.项目结构以及代码

分片查询(sharding-jdbc)以及常见问题解决_第2张图片
UserController.java

@RestController
public class UserController{
    @Autowired
    private UserPayOrderService userPayOrderService;

    /**
     * 根据订单号获取商户id
     * @param userOrderId 订单id
     * @return
     */
    @PostMapping("/userOrderMerchantId")
    public String userOrderMerchantId(@RequestParam("userOrderId") String userOrderId){
        return userPayOrderService.userOrderMerchantId(userOrderId);
    }
    @PostMapping("/submit")

    public String submit(@RequestBody SubmitUserPayOrderRequest userPayOrderRequest){
        return userPayOrderService.submit(userPayOrderRequest);

    }
}

UserPayOrderService .java

@Service
public class UserPayOrderService {

    @Autowired
    private UserPayOrderMapper userPayOrderDao;



    /**
     * 根据订单号获取商户id
     *
     * @param userOrderId
     * @return
     */
    public String userOrderMerchantId(String userOrderId) {
        UserPayOrder upo = userPayOrderDao.selectByEntity(new UserPayOrder()
            .setId(userOrderId));
        return JSON.toJSONString(upo);
    }


    /**
     * 提交订单
     *
     * @param userPayOrderRequest
     * @return
     * @throws Exception
     */
    @Transactional(rollbackFor = Exception.class)
    public String submit(SubmitUserPayOrderRequest userPayOrderRequest) {

                Date createTime = new Date();
                userPayOrderDao.insertSelective(new UserPayOrder()
                        .setId(userPayOrderRequest.getId())
                        .setMerchantId(userPayOrderRequest.getMerchantId())
                        .setUserPayId(userPayOrderRequest.getUserPayId())
                        .setAmountOfConsumption(userPayOrderRequest.getAmountOfConsumption())
                        .setPayAbleAmount(userPayOrderRequest.getPayAblAmount())
                        .setUserId(userPayOrderRequest.getUserId())
                        .setDiscountAmount(userPayOrderRequest.getDiscountAmount())
                        .setFreeAmount(userPayOrderRequest.getFreeAmount())
                        .setStatus(userPayOrderRequest.getStatus())
                        .setChannelId(userPayOrderRequest.getChannelId())
                        .setEnjoyKingAmount(userPayOrderRequest.getEnjoyKingAmount())
                        .setPayType(userPayOrderRequest.getPayType())
                        .setScanType(userPayOrderRequest.getScanType())
                        .setCreateTime(createTime));
                return "xx";
    }
}

UserPayOrderMapper.java

/**
 * @Author ww
 * @Date 2020-04-22
 */
@Mapper
public interface UserPayOrderMapper extends BaseDao<UserPayOrder,String> {
    
    //自行扩展

    int updateByIdAndPayUserId(UserPayOrder userPayOrder);

    Integer queryStatus(@Param("id") String id,
                        @Param("userPayId") Long userPayId);
    
    UserPayOrder selectByPayTime(UserPayOrder userPayOrder);
}


<mapper namespace="com.example.demo.data.mapper.user.UserPayOrderMapper">
    <resultMap id="BaseResultMap" type="com.example.demo.entity.UserPayOrder">
        <id column="id" jdbcType="VARCHAR" property="id" />
        <result column="merchant_id" jdbcType="BIGINT" property="merchantId" />
        <result column="user_pay_id" jdbcType="BIGINT" property="userPayId" />
        <result column="amount_of_consumption" jdbcType="DECIMAL" property="amountOfConsumption" />
        <result column="pay_able_amount" jdbcType="DECIMAL" property="payAbleAmount" />
        <result column="merchant_receive_amount" jdbcType="DECIMAL" property="merchantReceiveAmount" />
        <result column="pay_type" jdbcType="INTEGER" property="payType" />
        <result column="pay_time" jdbcType="TIMESTAMP" property="payTime" />
        <result column="user_id" jdbcType="BIGINT" property="userId" />
        <result column="discount_amount" jdbcType="DECIMAL" property="discountAmount" />
        <result column="free_amount" jdbcType="DECIMAL" property="freeAmount" />
        <result column="status" jdbcType="INTEGER" property="status" />
        <result column="channel_id" jdbcType="INTEGER" property="channelId" />
        <result column="enjoy_king_amount" jdbcType="DECIMAL" property="enjoyKingAmount" />
        <result column="create_time" jdbcType="TIMESTAMP" property="createTime" />
        <result column="update_time" jdbcType="TIMESTAMP" property="updateTime" />
        <result column="enjoy_issue_king_amount" jdbcType="DECIMAL" property="enjoyIssueKingAmount" />
        <result column="enjoy_receive_king_amount" jdbcType="DECIMAL" property="enjoyReceiveKingAmount" />

    resultMap>
mapper>

注意点

  1. 多数据源情况下,要有主数据源@Primary
  2. mapper文件地址要和ShardingMybatisConfig配置文件中@MapperScan路径一致,最好分库的数据源的mapper都在一个路径下,该路径下的mapper都是用ShardingDataSource的数据库链接,查询时候自带分片查询
  3. 插入和查询的时候会根据自定义算法

你可能感兴趣的:(基础,springboot项目)