新公司使用了自动分库分表的插件(sharding-jdbc),由于有多个数据源,所以结合了durid框架,作为数据库链接管理框架。
Sharding-JDBC是一个开源的分布式数据库中间件,它无需额外部署和依赖,完全兼容JDBC和各种ORM框架。Sharding-JDBC作为面向开发的微服务云原生基础类库,完整的实现了分库分表、读写分离和分布式主键功能,并初步实现了柔性事务。
研究了一天具体的运行的流程,自己实现了个小demo
项目用的是springboot 2.0+ 、mybaties 、durid
项目地址:https://github.com/zz790609619/LeetCodeRecord.git
由于是分库分表,所以新建三个库user_1,user_2,user_3,在各个数据库分别插入30个表
user_pay_order_0 ----> user_pay_order_29
建表语句如下:
CREATE TABLE IF NOT EXISTS user_pay_order (order_id INT NOT NULL, user_id INT NOT NULL, status VARCHAR(50), PRIMARY KEY (order_id))
项目的基本配置(pom.xml)
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0modelVersion>
<parent>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-parentartifactId>
<version>2.1.7.RELEASEversion>
<relativePath/>
parent>
<groupId>com.examplegroupId>
<artifactId>demoartifactId>
<version>0.0.1-SNAPSHOTversion>
<packaging>warpackaging>
<name>demoname>
<description>Demo project for Spring Bootdescription>
<properties>
<java.version>1.8java.version>
properties>
<dependencies>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-webartifactId>
dependency>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-testartifactId>
<scope>testscope>
dependency>
<dependency>
<groupId>com.alibabagroupId>
<artifactId>fastjsonartifactId>
<version>1.2.47version>
dependency>
<dependency>
<groupId>com.alibabagroupId>
<artifactId>druidartifactId>
<version>1.1.14version>
dependency>
<dependency>
<groupId>org.apache.shardingspheregroupId>
<artifactId>sharding-jdbc-spring-boot-starterartifactId>
<version>4.0.0-RC1version>
dependency>
<dependency>
<groupId>org.springframeworkgroupId>
<artifactId>spring-webartifactId>
<version>5.1.6.RELEASEversion>
dependency>
<dependency>
<groupId>org.mybatis.spring.bootgroupId>
<artifactId>mybatis-spring-boot-starterartifactId>
<version>2.0.0version>
dependency>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-jta-atomikosartifactId>
dependency>
<dependency>
<groupId>mysqlgroupId>
<artifactId>mysql-connector-javaartifactId>
<version>8.0.11version>
dependency>
dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-maven-pluginartifactId>
plugin>
plugins>
build>
project>
server:
port: 8090 #端口
spring:
datasource: #主数据源
type: com.alibaba.druid.pool.DruidDataSource
driverClassName: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://127.0.0.1:3306/game?useSSL=false&characterEncoding=utf8&serverTimezone=Asia/Shanghai
username: root
password: 123456
initialSize: 5
minIdle: 1
maxActive: 50
maxWait: 60000
timeBetweenEvictionRunsMillis: 60000
minEvictableIdleTimeMillis: 300000
filters: stat,wall
user: #分库后每个库的数据源
datasource:
ds0:
type: com.alibaba.druid.pool.DruidDataSource
driverClassName: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://127.0.0.1:3306/user_0?useSSL=false&characterEncoding=utf8&serverTimezone=Asia/Shanghai
username: root
password: 123456
ds1:
type: com.alibaba.druid.pool.DruidDataSource
driverClassName: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://127.0.0.1:3306/user_1?useSSL=false&characterEncoding=utf8&serverTimezone=Asia/Shanghai
username: root
password: 123456
ds2:
type: com.alibaba.druid.pool.DruidDataSource
driverClassName: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://127.0.0.1:3306/user_2?useSSL=false&characterEncoding=utf8&serverTimezone=Asia/Shanghai
username: root
password: 123456
mybatis:
mapper-locations: classpath:mapper/*.xml
注意点:
@Primary 必须配置 不然会报错
@MapperScan 扫描的mapper都将使用当前数据源
/**
* @Author ww
* @Date 2020-04-22
*/
@Configuration
@MapperScan(basePackages = {"com.example.demo.data.mapper.main"}, sqlSessionFactoryRef = "apiMainSqlSessionFactory")
public class MainDataSourceConfig {
//@Primary 标识主数据源
@Bean(name = "dataSource")
@Primary
public DataSource apiMainDataSource() {
//druid数据库连接配置
DruidXADataSource druidDataSource = new DruidXADataSource();
druidDataSource.setUrl(url);
druidDataSource.setUsername(userName);
druidDataSource.setPassword(password);
druidDataSource.setDriverClassName(driverClassName);
druidDataSource.setInitialSize(initialSize);
druidDataSource.setMaxActive(maxActive);
druidDataSource.setMinIdle(minIdle);
druidDataSource.setMaxWait(maxWait);
druidDataSource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
druidDataSource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
try {
druidDataSource.setFilters(filters);
} catch (SQLException e) {
e.printStackTrace();
}
//分布式数据源配置
AtomikosDataSourceBean sourceBean = new AtomikosDataSourceBean();
sourceBean.setXaDataSource(druidDataSource);
sourceBean.setMaxPoolSize(maxActive);
sourceBean.setUniqueResourceName("main0");
return sourceBean;
}
//@Qualifier("dataSource") 特指当前上面分布式数据源
@Bean(name = "apiMainSqlSessionFactory")
public SqlSessionFactory sqlSessionFactoryBean(@Qualifier("dataSource") DataSource dataSource) throws Exception {
SqlSessionFactoryBean sqlSessionFactoryBean = new SqlSessionFactoryBean();
sqlSessionFactoryBean.setDataSource(dataSource);
PathMatchingResourcePatternResolver resolver = new PathMatchingResourcePatternResolver();
sqlSessionFactoryBean.setMapperLocations(resolver
.getResources("classpath:mapper/*.xml"));
//SqlMonitorInterceptor 拦截sql查询语句 替换参数
sqlSessionFactoryBean.setPlugins(new Interceptor[]{new SqlMonitorInterceptor()});
return sqlSessionFactoryBean.getObject();
}
//@Value 获取刚刚yml配置文件中主数据源的参数
@Value("${spring.datasource.type}")
private String type;
@Value("${spring.datasource.driverClassName}")
private String driverClassName;
@Value("${spring.datasource.url}")
private String url;
@Value("${spring.datasource.username}")
private String userName;
@Value("${spring.datasource.password}")
private String password;
@Value("${spring.datasource.initialSize}")
private Integer initialSize;
@Value("${spring.datasource.maxActive}")
private Integer maxActive;
@Value("${spring.datasource.minIdle}")
private Integer minIdle;
@Value("${spring.datasource.maxWait}")
private Long maxWait;
@Value("${spring.datasource.timeBetweenEvictionRunsMillis}")
private Long timeBetweenEvictionRunsMillis;
@Value("${spring.datasource.minEvictableIdleTimeMillis}")
private Long minEvictableIdleTimeMillis;
@Value("${spring.datasource.filters}")
private String filters;
}
SqlMonitorInterceptor 拦截器
package com.example.demo.config.plugin;//
@Intercepts({@Signature(
args = {MappedStatement.class, Object.class},
method = "update",
type = Executor.class
), @Signature(
args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class},
method = "query",
type = Executor.class
), @Signature(
args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class, CacheKey.class, BoundSql.class},
method = "query",
type = Executor.class
)})
public class SqlMonitorInterceptor implements Interceptor {
public SqlMonitorInterceptor() {
}
/**
* 将责任链的内的sql,替换参数 查询sql
**/
public Object intercept(Invocation invocation) throws Throwable {
String classname = "";
String method = "";
String sql = "";
String sql_param = "";
long duration = -1L;
long beginTime = System.currentTimeMillis();
try {
MappedStatement mappedStatement = (MappedStatement)invocation.getArgs()[0];
String[] strArr = mappedStatement.getId().split("\\.");
classname = strArr[strArr.length - 2];
method = strArr[strArr.length - 1];
Object parameter = null;
if (invocation.getArgs().length > 1) {
parameter = invocation.getArgs()[1];
}
BoundSql boundSql = mappedStatement.getBoundSql(parameter);
sql = boundSql.getSql();
sql_param = JSON.toJSONString(parameter);
} catch (Exception var14) {
var14.printStackTrace();
}
Object returnObj = invocation.proceed();
long endTime = System.currentTimeMillis();
duration = endTime - beginTime;
return returnObj;
}
public String showSql(Configuration configuration, BoundSql boundSql) {
Object parameterObject = boundSql.getParameterObject();
List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
String sql = boundSql.getSql().replaceAll("[\\s]+", " ");
if (parameterMappings.size() > 0 && parameterObject != null) {
TypeHandlerRegistry typeHandlerRegistry = configuration.getTypeHandlerRegistry();
if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
sql = sql.replaceFirst("\\?", this.getParameterValue(parameterObject));
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
Iterator var8 = parameterMappings.iterator();
while(var8.hasNext()) {
ParameterMapping parameterMapping = (ParameterMapping)var8.next();
String propertyName = parameterMapping.getProperty();
Object obj;
if (metaObject.hasGetter(propertyName)) {
obj = metaObject.getValue(propertyName);
sql = sql.replaceFirst("\\?", this.getParameterValue(obj));
} else if (boundSql.hasAdditionalParameter(propertyName)) {
obj = boundSql.getAdditionalParameter(propertyName);
sql = sql.replaceFirst("\\?", this.getParameterValue(obj));
}
}
}
}
return sql;
}
private String getParameterValue(Object obj) {
String value = null;
if (obj instanceof String) {
value = "'" + obj.toString() + "'";
} else if (obj instanceof Date) {
DateFormat formatter = DateFormat.getDateTimeInstance(2, 2, Locale.CHINA);
value = "'" + formatter.format(new Date()) + "'";
} else if (obj != null) {
value = obj.toString();
} else {
value = "";
}
return value;
}
public Object plugin(Object target) {
return target instanceof Executor ? Plugin.wrap(target, this) : target;
}
public void setProperties(Properties properties) {
}
}
配置三个数据源的信息
package com.example.demo.config;
import com.alibaba.druid.pool.xa.DruidXADataSource;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.jta.atomikos.AtomikosDataSourceBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import javax.sql.DataSource;
import java.sql.SQLException;
/**
* @Author ww
* @Date 2020-04-22
*/
@Configuration
public class UserDataSourceConfig {
@Bean(name = "shardingdsDataSource")
public DataSource shardingDataSource() {
AtomikosDataSourceBean sourceBean = new AtomikosDataSourceBean();
DruidXADataSource druidDataSource = new DruidXADataSource();
druidDataSource.setUrl(url);
druidDataSource.setUsername(userName);
druidDataSource.setPassword(password);
druidDataSource.setDriverClassName(driverClassName);
druidDataSource.setInitialSize(initialSize);
druidDataSource.setMaxActive(maxActive);
druidDataSource.setMinIdle(minIdle);
druidDataSource.setMaxWait(maxWait);
druidDataSource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
druidDataSource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
try {
druidDataSource.setFilters(filters);
} catch (SQLException e) {
e.printStackTrace();
}
sourceBean.setXaDataSource(druidDataSource);
sourceBean.setUniqueResourceName("ds0");
sourceBean.setMaxPoolSize(maxActive);
return sourceBean;
}
@Bean(name = "shardingOneDataSource")
public DataSource shardingOneDataSource() {
AtomikosDataSourceBean sourceBean = new AtomikosDataSourceBean();
DruidXADataSource druidDataSource = new DruidXADataSource();
druidDataSource.setUrl(urlOne);
druidDataSource.setUsername(userNameOne);
druidDataSource.setPassword(passwordOne);
druidDataSource.setDriverClassName(driverClassNameOne);
druidDataSource.setInitialSize(initialSize);
druidDataSource.setMaxActive(maxActive);
druidDataSource.setMinIdle(minIdle);
druidDataSource.setMaxWait(maxWait);
druidDataSource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
druidDataSource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
try {
druidDataSource.setFilters(filters);
} catch (SQLException e) {
e.printStackTrace();
}
sourceBean.setXaDataSource(druidDataSource);
sourceBean.setMaxPoolSize(maxActive);
sourceBean.setUniqueResourceName("ds1");
return sourceBean;
}
@Bean(name = "shardingTwoDataSource")
public DataSource shardingTwoDataSource() {
AtomikosDataSourceBean sourceBean = new AtomikosDataSourceBean();
DruidXADataSource druidDataSource = new DruidXADataSource();
druidDataSource.setUrl(urlTwo);
druidDataSource.setUsername(userNameTwo);
druidDataSource.setPassword(passwordTwo);
druidDataSource.setDriverClassName(driverClassNameTwo);
druidDataSource.setInitialSize(initialSize);
druidDataSource.setMaxActive(maxActive);
druidDataSource.setMinIdle(minIdle);
druidDataSource.setMaxWait(maxWait);
druidDataSource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
druidDataSource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
try {
druidDataSource.setFilters(filters);
} catch (SQLException e) {
e.printStackTrace();
}
sourceBean.setXaDataSource(druidDataSource);
sourceBean.setMaxPoolSize(maxActive);
sourceBean.setUniqueResourceName("ds2");
return sourceBean;
}
//三个分库的数据源配置
@Value("${spring.user.datasource.ds0.type}")
private String type;
@Value("${spring.user.datasource.ds0.driver-class-name}")
private String driverClassName;
@Value("${spring.user.datasource.ds0.url}")
private String url;
@Value("${spring.user.datasource.ds0.username}")
private String userName;
@Value("${spring.user.datasource.ds0.password}")
private String password;
@Value("${spring.user.datasource.ds1.type}")
private String typeOne;
@Value("${spring.user.datasource.ds1.driver-class-name}")
private String driverClassNameOne;
@Value("${spring.user.datasource.ds1.url}")
private String urlOne;
@Value("${spring.user.datasource.ds1.username}")
private String userNameOne;
@Value("${spring.user.datasource.ds1.password}")
private String passwordOne;
@Value("${spring.user.datasource.ds2.type}")
private String typeTwo;
@Value("${spring.user.datasource.ds2.driver-class-name}")
private String driverClassNameTwo;
@Value("${spring.user.datasource.ds2.url}")
private String urlTwo;
@Value("${spring.user.datasource.ds2.username}")
private String userNameTwo;
@Value("${spring.user.datasource.ds2.password}")
private String passwordTwo;
@Value("${spring.datasource.initialSize}")
private Integer initialSize;
@Value("${spring.datasource.maxActive}")
private Integer maxActive;
@Value("${spring.datasource.minIdle}")
private Integer minIdle;
@Value("${spring.datasource.maxWait}")
private Long maxWait;
@Value("${spring.datasource.timeBetweenEvictionRunsMillis}")
private Long timeBetweenEvictionRunsMillis;
@Value("${spring.datasource.minEvictableIdleTimeMillis}")
private Long minEvictableIdleTimeMillis;
@Value("${spring.datasource.filters}")
private String filters;
}
将三个数据源装载在分片数据源工厂里
/**
* @Author ww
* @Date 2020-04-22
*/
@Component
public class ShardingDataSourceConfig {
//最后返回的由 分片数据工厂ShardingDataSourceFactory 生产的DataSource
private DataSource shardingDataSource;
//前面配置的三个分库的数据源
@Resource(name = "shardingdsDataSource")
private DataSource shardingdsDataSource;
@Resource(name = "shardingOneDataSource")
private DataSource shardingOneDataSource;
@Resource(name = "shardingTwoDataSource")
private DataSource shardingTwoDataSource;
//在当前类被依赖注入(@autowired)后执行的方法。
@PostConstruct
public void init() throws SQLException {
//将三个数据源放在map中
Map<String ,DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put("ds0",shardingdsDataSource);
dataSourceMap.put("ds1",shardingOneDataSource);
dataSourceMap.put("ds2",shardingTwoDataSource);
//
/**
* 新建分片规则配置类 参数任意选
* public final class ShardingRuleConfiguration {
* //默认数据源名称
* private String defaultDataSourceName;
* //表规则配置
* private Collection tableRuleConfigs = new LinkedList<>();
* //相同表分片规则的组,如果表分片规则相同,则可以放在一个组里。
* private Collection bindingTableGroups = new LinkedList<>();
* //默认数据库的分片算法配置
* private ShardingStrategyConfiguration defaultDatabaseShardingStrategyConfig;
* //默认表的分片算法配置
* private ShardingStrategyConfiguration defaultTableShardingStrategyConfig;
* //默认键的生成工具类
* private KeyGenerator defaultKeyGenerator;
* //主备配置信息
* private Collection masterSlaveRuleConfigs = new LinkedList<>();
* }
*/
ShardingRuleConfiguration shardingRuleConfiguration = new ShardingRuleConfiguration();
//相同表分片规则的组,如果表分片规则相同,则可以放在一个组里
shardingRuleConfiguration.getBindingTableGroups().addAll(Arrays.asList(
"user_pay_order"
));
//表规则配置
List<TableRuleConfiguration> tableRuleConfigurationList = new ArrayList<>();
/**
* //逻辑表名
* private String logicTable;
* //真实的数据节点名称
* private String actualDataNodes;
* //数据库分片算法配置
* private ShardingStrategyConfiguration databaseShardingStrategyConfig;
* //表分片算法配置
* private ShardingStrategyConfiguration tableShardingStrategyConfig;
* //自动生成键的名称
* private String keyGeneratorColumnName;
* //自动生成键的工具类
* private KeyGenerator keyGenerator;
*
* private String logicIndex;
*/
// param1 : 逻辑表名, param2 : 真实存在的节点,由数据源 + 表明组成, ds${0..1} 代表 数据库选择 ds 后缀为 0 - 2 之间,user_pay_order_ 代表数据表 user_pay_order_ 后缀 0 - 1 之间
TableRuleConfiguration tableRuleConfiguration = new TableRuleConfiguration("user_pay_order","ds${0..2}.user_pay_order_${0..29}");
//表分片算法配置
tableRuleConfiguration.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("user_pay_id",new ShardingAlgorithmLong()));
//数据库分片算法配置
tableRuleConfiguration.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("user_pay_id",new UserPayOrderDataSourceAlgo()));
tableRuleConfigurationList.add(tableRuleConfiguration);
// 配置分片规则
shardingRuleConfiguration.getTableRuleConfigs().addAll(tableRuleConfigurationList);
shardingDataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap,shardingRuleConfiguration,new Properties());
}
public DataSource getDataSource() {
return shardingDataSource;
}
}
精确分片算法
对应PreciseShardingAlgorithm,用于处理使用单一键作为分片键的=与IN进行分片的场景。需要配合StandardShardingStrategy使用。
范围分片算法
对应RangeShardingAlgorithm,用于处理使用单一键作为分片键的BETWEEN AND进行分片的场景。需要配合StandardShardingStrategy使用。
复合分片算法
对应ComplexKeysShardingAlgorithm,用于处理使用多键作为分片键进行分片的场景,包含多个分片键的逻辑较复杂,需要应用开发者自行处理其中的复杂度。需要配合ComplexShardingStrategy使用。
Hint分片算法
对应HintShardingAlgorithm,用于处理使用Hint行分片的场景。需要配合HintShardingStrategy使用。
分库算法UserPayOrderDataSourceAlgo 使用的是精确分片算法
/**
* @Author ww
* @Date 2020-04-22
*/
public class UserPayOrderDataSourceAlgo implements PreciseShardingAlgorithm<Long> {
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) {
int postfix = (int)((shardingValue.getValue() / 30) % availableTargetNames.size());
for (String dataSource : availableTargetNames) {
if (dataSource.endsWith(String.valueOf(postfix))) {
return dataSource;
}
}
throw new IllegalArgumentException();
}
}
分表算法 ShardingAlgorithmLong
/**
* @Author ww
* @Date 2020-04-22
*/
public class ShardingAlgorithmLong implements PreciseShardingAlgorithm<Long> {
@Override
public String doSharding(Collection<String> collection, PreciseShardingValue<Long> preciseShardingValue) {
String postfix = "" +(preciseShardingValue.getValue() % collection.size());
for (String tableName : collection){
if(tableName.endsWith(postfix)){
return tableName;
}
}
throw new IllegalArgumentException("没有匹配到id:"+preciseShardingValue.getValue());
}
}
@Configuration
@MapperScan(basePackages = {"com.example.demo.data.mapper.user"}, sqlSessionFactoryRef = "sqlSessionFactory")
public class ShardingMybatisConfig {
@Autowired
private ShardingDataSourceConfig dataSourceConfig;
@Bean(name = "sqlSessionFactory")
public SqlSessionFactory sqlSessionFactory(@Qualifier("dataSource") DataSource dataSource) throws Exception {
SqlSessionFactoryBean sqlSessionFactoryBean = new SqlSessionFactoryBean();
sqlSessionFactoryBean.setDataSource(dataSourceConfig.getDataSource());
PathMatchingResourcePatternResolver resolver = new PathMatchingResourcePatternResolver();
sqlSessionFactoryBean.setMapperLocations(resolver
.getResources("classpath:mapper/*.xml"));
sqlSessionFactoryBean.setPlugins(new Interceptor[]{new UserPayOrderSqlInterceptor()});
return sqlSessionFactoryBean.getObject();
}
}
Mybatis采用责任链模式,通过动态代理组织多个拦截器(插件),通过这些拦截器可以改变Mybatis的默认行为(诸如SQL重写之类的)
/**
* 这是个临时的补救类,主要解决UserPayOrder根据主键进行查询的问题(分片查询) 没有也可以
*/
@Intercepts({@Signature(
args = {MappedStatement.class, Object.class},
method = "update",
type = Executor.class
), @Signature(
args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class},
method = "query",
type = Executor.class
), @Signature(
args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class, CacheKey.class, BoundSql.class},
method = "query",
type = Executor.class
)})
public class UserPayOrderSqlInterceptor implements Interceptor {
//Object intercept(Invocation invocation)是实现拦截逻辑的地方,内部要通过invocation.proceed()显式地推进责任链前进,也就是调用下一个拦截器拦截目标方法
public Object intercept(Invocation invocation) throws Throwable {
String classname = "";
String method = "";
String sql = "";
String sql_param = "";
long duration = -1L;
long beginTime = System.currentTimeMillis();
try {
MappedStatement mappedStatement = (MappedStatement)invocation.getArgs()[0];
String[] strArr = mappedStatement.getId().split("\\.");
classname = strArr[strArr.length - 2];
method = strArr[strArr.length - 1];
Object parameter = null;
if (invocation.getArgs().length > 1) {
parameter = invocation.getArgs()[1];
}
BoundSql boundSql = mappedStatement.getBoundSql(parameter);
sql = boundSql.getSql();
sql_param = JSON.toJSONString(parameter);
if(classname.equals("UserPayOrderMapper") && method.equals("selectByPrimaryKey")){
String user_pay_id=parameter.toString().split("_")[1];
sql=sql+" and user_pay_id="+user_pay_id;
System.out.println("newsql: "+sql);
modify(boundSql,"sql",sql);
}
} catch (Exception var14) {
var14.printStackTrace();
}
Object returnObj = invocation.proceed();
long endTime = System.currentTimeMillis();
duration = endTime - beginTime;
return returnObj;
}
public String showSql(Configuration configuration, BoundSql boundSql) {
Object parameterObject = boundSql.getParameterObject();
List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
String sql = boundSql.getSql().replaceAll("[\\s]+", " ");
if (parameterMappings.size() > 0 && parameterObject != null) {
TypeHandlerRegistry typeHandlerRegistry = configuration.getTypeHandlerRegistry();
if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
sql = sql.replaceFirst("\\?", this.getParameterValue(parameterObject));
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
Iterator var8 = parameterMappings.iterator();
while(var8.hasNext()) {
ParameterMapping parameterMapping = (ParameterMapping)var8.next();
String propertyName = parameterMapping.getProperty();
Object obj;
if (metaObject.hasGetter(propertyName)) {
obj = metaObject.getValue(propertyName);
sql = sql.replaceFirst("\\?", this.getParameterValue(obj));
} else if (boundSql.hasAdditionalParameter(propertyName)) {
obj = boundSql.getAdditionalParameter(propertyName);
sql = sql.replaceFirst("\\?", this.getParameterValue(obj));
}
}
}
}
return sql;
}
private static void modify(Object object, String fieldName, Object newFieldValue){
try {
Field field = object.getClass().getDeclaredField(fieldName);
Field modifiersField = Field.class.getDeclaredField("modifiers");
modifiersField.setAccessible(true);
modifiersField.setInt(field, field.getModifiers() & Modifier.FINAL);
if(!field.isAccessible()) {
field.setAccessible(true);
}
field.set(object, newFieldValue);
} catch (Exception e) {
e.printStackTrace();
}
}
private String getParameterValue(Object obj) {
String value = null;
if (obj instanceof String) {
value = "'" + obj.toString() + "'";
} else if (obj instanceof Date) {
DateFormat formatter = DateFormat.getDateTimeInstance(2, 2, Locale.CHINA);
value = "'" + formatter.format(new Date()) + "'";
} else if (obj != null) {
value = obj.toString();
} else {
value = "";
}
return value;
}
//Object plugin(Object target) 就是用当前这个拦截器生成对目标target的代理,实际是通过Plugin.wrap(target,this) 来完成的,把目标target和拦截器this传给了包装函数
public Object plugin(Object target) {
return target instanceof Executor ? Plugin.wrap(target, this) : target;
}
//setProperties(Properties properties)用于设置额外的参数,参数配置在拦截器的Properties节点里
public void setProperties(Properties properties) {
}
}
@RestController
public class UserController{
@Autowired
private UserPayOrderService userPayOrderService;
/**
* 根据订单号获取商户id
* @param userOrderId 订单id
* @return
*/
@PostMapping("/userOrderMerchantId")
public String userOrderMerchantId(@RequestParam("userOrderId") String userOrderId){
return userPayOrderService.userOrderMerchantId(userOrderId);
}
@PostMapping("/submit")
public String submit(@RequestBody SubmitUserPayOrderRequest userPayOrderRequest){
return userPayOrderService.submit(userPayOrderRequest);
}
}
UserPayOrderService .java
@Service
public class UserPayOrderService {
@Autowired
private UserPayOrderMapper userPayOrderDao;
/**
* 根据订单号获取商户id
*
* @param userOrderId
* @return
*/
public String userOrderMerchantId(String userOrderId) {
UserPayOrder upo = userPayOrderDao.selectByEntity(new UserPayOrder()
.setId(userOrderId));
return JSON.toJSONString(upo);
}
/**
* 提交订单
*
* @param userPayOrderRequest
* @return
* @throws Exception
*/
@Transactional(rollbackFor = Exception.class)
public String submit(SubmitUserPayOrderRequest userPayOrderRequest) {
Date createTime = new Date();
userPayOrderDao.insertSelective(new UserPayOrder()
.setId(userPayOrderRequest.getId())
.setMerchantId(userPayOrderRequest.getMerchantId())
.setUserPayId(userPayOrderRequest.getUserPayId())
.setAmountOfConsumption(userPayOrderRequest.getAmountOfConsumption())
.setPayAbleAmount(userPayOrderRequest.getPayAblAmount())
.setUserId(userPayOrderRequest.getUserId())
.setDiscountAmount(userPayOrderRequest.getDiscountAmount())
.setFreeAmount(userPayOrderRequest.getFreeAmount())
.setStatus(userPayOrderRequest.getStatus())
.setChannelId(userPayOrderRequest.getChannelId())
.setEnjoyKingAmount(userPayOrderRequest.getEnjoyKingAmount())
.setPayType(userPayOrderRequest.getPayType())
.setScanType(userPayOrderRequest.getScanType())
.setCreateTime(createTime));
return "xx";
}
}
UserPayOrderMapper.java
/**
* @Author ww
* @Date 2020-04-22
*/
@Mapper
public interface UserPayOrderMapper extends BaseDao<UserPayOrder,String> {
//自行扩展
int updateByIdAndPayUserId(UserPayOrder userPayOrder);
Integer queryStatus(@Param("id") String id,
@Param("userPayId") Long userPayId);
UserPayOrder selectByPayTime(UserPayOrder userPayOrder);
}
<mapper namespace="com.example.demo.data.mapper.user.UserPayOrderMapper">
<resultMap id="BaseResultMap" type="com.example.demo.entity.UserPayOrder">
<id column="id" jdbcType="VARCHAR" property="id" />
<result column="merchant_id" jdbcType="BIGINT" property="merchantId" />
<result column="user_pay_id" jdbcType="BIGINT" property="userPayId" />
<result column="amount_of_consumption" jdbcType="DECIMAL" property="amountOfConsumption" />
<result column="pay_able_amount" jdbcType="DECIMAL" property="payAbleAmount" />
<result column="merchant_receive_amount" jdbcType="DECIMAL" property="merchantReceiveAmount" />
<result column="pay_type" jdbcType="INTEGER" property="payType" />
<result column="pay_time" jdbcType="TIMESTAMP" property="payTime" />
<result column="user_id" jdbcType="BIGINT" property="userId" />
<result column="discount_amount" jdbcType="DECIMAL" property="discountAmount" />
<result column="free_amount" jdbcType="DECIMAL" property="freeAmount" />
<result column="status" jdbcType="INTEGER" property="status" />
<result column="channel_id" jdbcType="INTEGER" property="channelId" />
<result column="enjoy_king_amount" jdbcType="DECIMAL" property="enjoyKingAmount" />
<result column="create_time" jdbcType="TIMESTAMP" property="createTime" />
<result column="update_time" jdbcType="TIMESTAMP" property="updateTime" />
<result column="enjoy_issue_king_amount" jdbcType="DECIMAL" property="enjoyIssueKingAmount" />
<result column="enjoy_receive_king_amount" jdbcType="DECIMAL" property="enjoyReceiveKingAmount" />
resultMap>
mapper>