首先写这篇文章之前贴上二篇分析较好的博客,非常感谢博主的奉献精神
http://blog.csdn.net/scnuxisan225/article/details/49815269
http://mp.weixin.qq.com/s/laR3_Xvr0Slb4oR8D1eQyQ
大家都遇到过在android开发时,在Activity中的onCreate方法中通过控件的getMeasureHeight/getHeight或者getMeasureWidth/getWidth方法获取到的宽高大小都是0,我相信大家遇到这种问题时首先会想到打开度娘然后一搜,常见的二种解决方案就出来了。
1.通过监听Draw/Layout事件:ViewTreeObserver
1 view.getViewTreeObserver().addOnGlobalLayoutListener(new ViewTreeObserver.OnGlobalLayoutListener() {
2 @Override
3 public void onGlobalLayout() {
4 mScrollView.post(new Runnable() {
5 public void run() {
6 view.getHeight(); //height is ready
7 }
8 });
9 }
10 });
当我们注册这个监听时,控件经过 onMeasure->onLayout->onDraw一系列方法渲染完成后会去回调这个注册的监听,我们自然能拿到控件的宽高。
2.第二种方法我比较喜欢,只要用View.post()一个runnable就可以了
1 ...
2 view.post(new Runnable() {
3 @Override
4 public void run() {
5 view.getHeight(); //height is ready
6 }
7 });
8 ...
我们一般这么用总能拿到控件的宽高大小,方法是非常好用,但是本着十万个为什么态度,我决定把这个方法的原理整理一遍。
我们先回忆下,android中每个界面是个Activity,每个Activity最顶层是一个DecorView,它包裹我们自定义的布局.
好接下来我们看下View的post方法干了什么
public boolean post(Runnable action) {
final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
return attachInfo.mHandler.post(action);
}
// Postpone the runnable until we know on which thread it needs to run.
// Assume that the runnable will be successfully placed after attach.
getRunQueue().post(action);
return true;
}
这里面判断mAttachInfo是不是为空,如果不为null时,直接取出mAttachInfo中存放的Handler对象去post 我们的Runnable任务,如果为null的话我们看看getRunQueue()方法会做什么
private HandlerActionQueue getRunQueue() {
if (mRunQueue == null) {
mRunQueue = new HandlerActionQueue();
}
return mRunQueue;
}
它会去创建一次HandlerActionQueue对象然后把这个对象返回,好我们点进这个对象看一下
public class HandlerActionQueue {
private HandlerAction[] mActions;
private int mCount;
public void post(Runnable action) {
postDelayed(action, 0);
}
public void postDelayed(Runnable action, long delayMillis) {
final HandlerAction handlerAction = new HandlerAction(action, delayMillis);
synchronized (this) {
if (mActions == null) {
mActions = new HandlerAction[4];
}
mActions = GrowingArrayUtils.append(mActions, mCount, handlerAction);
mCount++;
}
}
....
我们之前代码可以看到如果mAttachInfo为null的话会去调用HandlerActionQueue对象中的post方法传递我们Runnable任务,接着会调用postDelayed方法,这个方法会把我们的Runnable任务和需要延迟的时间都封装到HandlerAction对象中然后加入到下面的HandlerAction[]数组中,点进去也会发现HandlerAction 就是一个简单的封装类。
private static class HandlerAction {
final Runnable action;
final long delay;
public HandlerAction(Runnable action, long delay) {
this.action = action;
this.delay = delay;
}
public boolean matches(Runnable otherAction) {
return otherAction == null && action == null
|| action != null && action.equals(otherAction);
}
}
现在我们回过头思考一下就会有疑惑了,情景回到post方法中,我们根据mAttachInfo这个值判断是直接post发送任务还是把任务放入队列,那么这个值是什么时候被赋值的呢?
答案就在ViewRootImpl类中,在ViewRootImpl构造中有这么端代码创建了AttachInfo对象。
mAttachInfo = new View.AttachInfo(mWindowSession, mWindow, display, this, mHandler, this);
然后在performTraversals()方法中会去调用这么段代码 ,这段代码执行在大家很熟悉的 performMeasure、performLayout、performDraw方法之前。
host.dispatchAttachedToWindow(mAttachInfo, 0);
host就是DecorView,它是一个ViewGroup,所以我们先看看ViewGroup中的dispatchAttachedToWindow方法
@Override
void dispatchAttachedToWindow(AttachInfo info, int visibility) {
mGroupFlags |= FLAG_PREVENT_DISPATCH_ATTACHED_TO_WINDOW;
super.dispatchAttachedToWindow(info, visibility);
mGroupFlags &= ~FLAG_PREVENT_DISPATCH_ATTACHED_TO_WINDOW;
final int count = mChildrenCount;
final View[] children = mChildren;
for (int i = 0; i < count; i++) {
final View child = children[i];
child.dispatchAttachedToWindow(info,
combineVisibility(visibility, child.getVisibility()));
}
final int transientCount = mTransientIndices == null ? 0 : mTransientIndices.size();
for (int i = 0; i < transientCount; ++i) {
View view = mTransientViews.get(i);
view.dispatchAttachedToWindow(info,
combineVisibility(visibility, view.getVisibility()));
}
}
可以看到主要这个方法中会调用自己和所有child父类也就是View中的dispatchAttachedToWindow方法,那我们看看View中的dispatchAttachedToWindow方法究竟干了些什么事情吧?
/**
* @param info the {@link android.view.View.AttachInfo} to associated with
* this view
*/
void dispatchAttachedToWindow(AttachInfo info, int visibility) {
mAttachInfo = info;
if (mOverlay != null) {
mOverlay.getOverlayView().dispatchAttachedToWindow(info, visibility);
}
mWindowAttachCount++;
// We will need to evaluate the drawable state at least once.
mPrivateFlags |= PFLAG_DRAWABLE_STATE_DIRTY;
if (mFloatingTreeObserver != null) {
info.mTreeObserver.merge(mFloatingTreeObserver);
mFloatingTreeObserver = null;
}
registerPendingFrameMetricsObservers();
if ((mPrivateFlags&PFLAG_SCROLL_CONTAINER) != 0) {
mAttachInfo.mScrollContainers.add(this);
mPrivateFlags |= PFLAG_SCROLL_CONTAINER_ADDED;
}
// Transfer all pending runnables.
if (mRunQueue != null) {
mRunQueue.executeActions(info.mHandler);
mRunQueue = null;
}
performCollectViewAttributes(mAttachInfo, visibility);
onAttachedToWindow();
ListenerInfo li = mListenerInfo;
final CopyOnWriteArrayList listeners =
li != null ? li.mOnAttachStateChangeListeners : null;
if (listeners != null && listeners.size() > 0) {
// NOTE: because of the use of CopyOnWriteArrayList, we *must* use an iterator to
// perform the dispatching. The iterator is a safe guard against listeners that
// could mutate the list by calling the various add/remove methods. This prevents
// the array from being modified while we iterate it.
for (OnAttachStateChangeListener listener : listeners) {
listener.onViewAttachedToWindow(this);
}
}
int vis = info.mWindowVisibility;
if (vis != GONE) {
onWindowVisibilityChanged(vis);
if (isShown()) {
// Calling onVisibilityChanged directly here since the subtree will also
// receive dispatchAttachedToWindow and this same call
onVisibilityAggregated(vis == VISIBLE);
}
}
// Send onVisibilityChanged directly instead of dispatchVisibilityChanged.
// As all views in the subtree will already receive dispatchAttachedToWindow
// traversing the subtree again here is not desired.
onVisibilityChanged(this, visibility);
if ((mPrivateFlags&PFLAG_DRAWABLE_STATE_DIRTY) != 0) {
// If nobody has evaluated the drawable state yet, then do it now.
refreshDrawableState();
}
needGlobalAttributesUpdate(false);
}
这段代码比较长但是我们一眼就可以看到mAttachInfo 正是在这里被赋值的,而被赋值调用的地方正是在上面ViewRootImpl中的performTraversals()方法中!
然后我们接着看这个方法
mRunQueue.executeActions(info.mHandler);
调用了这句代码,执行了我们前面提到的HandlerAction类中的executeActions方法,我们看下这个方法做了些什么事情
public void executeActions(Handler handler) {
synchronized (this) {
final HandlerAction[] actions = mActions;
for (int i = 0, count = mCount; i < count; i++) {
final HandlerAction handlerAction = actions[i];
handler.postDelayed(handlerAction.action, handlerAction.delay);
}
mActions = null;
mCount = 0;
}
}
ok,一切思路都那么清晰了,这个方法会用我们传递进来的mAttachInfo中的Handler去遍历我们View.post储存的所有Runnable任务。
至此貌似所有的流程都分析完毕了,但是如果有细心的同学会发现前面的分析有漏洞,哪里呢?就是在执行ViewRootImpl中的performTraversals()方法的时候,
host.dispatchAttachedToWindow(mAttachInfo, 0);
调用这个方法明明执行在测量,布局,绘制三个方法之前,也就是说调用这个方法后就会拿到我们传递mAttachInfo中Handler去执行View.post中的Runnable,然后才会去调用测量,布局,绘制三个方法,那理论上还是拿不到宽高值啊,这个时候还没执行测量啊,可是为什么结果可以拿到呢???
没关系,我一开始也是这么认为的并且陷入了很长一段时间的困惑当中,这是由于不了解android消息机制导致的,Android的运行其实是一个消息驱动模式,也就是说在Android主线程中默认是创建了一个Handler的,并且这个主线程中创建了一个Looper去循环遍历执行队列中的Message,这个执行是同步的,也就是说执行完一个Message后才会去继续执行下一个,调用performTraversals()这个方法是通过主线程的Looper遍历执行的,这个方法还没执行结束,然后我们在这个方法中通过mAttachInfo中Handler去执行View.post中的Runnable,mAttachInfo中Handler也是创建在主线程,所以它会在上一个消息执行结束后才会被执行,也就是说会在测量,布局,绘制执行后才执行,这样自然而然能拿到控件的宽和高啦。
我不禁敬佩,Android团队的这个机制设计的太巧妙了。