- 【iOS】锁[特殊字符]
文章目录前言1️⃣什么是锁?1.1基本概念1.2锁的分类2️⃣OC中的常用锁2.1OSSpinLock(已弃用):“自旋锁”的经典代表为什么尽量在开发中不使用自旋锁自旋锁的本质缺陷:忙等待(BusyWaiting)os_unfair_lock的局限性:不适用于复杂场景苹果的官方建议:优先使用更高效的锁2.2dispatch_semaphore_t(GCD信号量):“高性能通用锁”2.3pthrea
- cf1925B&C
B.https://codeforces.com/contest/1925/problem/B题目背景:将x划分为n个数,使x个数字之间有最大的gcd。数据范围:1#defineiosccios::sync_with_stdio(false),cin.tie(0),cout.tie(0)#defineendl'\n'#defineme(a,x)memset(a,x,sizeofa)#definea
- C++ 标准库 <numeric>
以下对C++标准库中头文件所提供的数值算法与工具做一次系统、深入的梳理,包括算法功能、示例代码、复杂度分析及实践建议。一、概述中定义了一组对数值序列进行累加、内积、差分、扫描等操作的算法,以及部分辅助工具(如std::iota、std::gcd/std::lcm等)。所有算法均作用于迭代器区间,符合STL风格,可与任意容器或原始数组配合使用。从C++17、20起,又陆续加入了并行友好的std::r
- Swift 6.2 并发江湖:两大神功破局旧制,代码运行经脉革新(下)
大熊猫侯佩
Apple开发入门Swift6.2WWDC25并发async/awaitnonisolatednonsendingconcurrent
楔子江湖风云变幻,Swift武林近日再掀波澜。传闻Apple于密室推演三月,终得《Swift6.2并发新篇》,扬言要破解困扰开发者多年的“经脉错乱”之症——那便是异步函数与同步函数运行规则不一、主Actor调用常生冲突之陈年旧疾。想当年,多少英雄好汉折戟于GCD到Swift并发的转型之路:明明是同门函数,同步者循调用者经脉而行,异步者却偏要另辟蹊径,轻则编译器怒目相向,重则数据走火入魔。如今6.2
- Codeforces Round 1027 (Div. 3)
ABCDE略F记忆化搜索。首先让x和y除去他们的的gcd,此时xy互质。x经历除去所有它的约数到1,而y从1乘它所有的约数到y。本质一样。设f[x]表示x最少除以几个满足题意的数到1。这时一定有f[x]=min(f[x],f[x/y]+1)(y为x的约数且yusingnamespacestd;//#defineintlonglong#defineendl'\n'constintN=1e6+5;in
- 好记性不如烂笔头--使用dotnet-gcdump分析.net core程序内存泄漏
学无止境Coding
性能分析工具C#.net.net.netcorebugvisualstudiowindows
系列文章目录第一章使用ANTSMemoryProfiler排查.net内存泄漏问题https://blog.csdn.net/pdsazj/article/details/128259980第二章使用dotnet-gcdump分析内存泄漏目录前言一、dotnet-gcdump是什么?二、使用步骤1.安装命令2.使用3.分析数据a.使用VisualStudio对单个gcdump文件进行分析b.使用V
- HDU杭电OJ基础100题2010-2019(C语言版)
雁于飞
算法专栏c语言开发语言
文章目录@[TOC](文章目录)[原题出处](https://acm.hdu.edu.cn/listproblem.php?vol=11)前言p2010.水仙花数问题描述解题思路代码核心思想:p2011多项式求和问题描述代码p2003求绝对值问题描述解题思路代码扩展p2004成绩转换问题描述解题思路代码重点p2005第几天问题描述解题思路代码扩展p2006求奇数的乘积p2007平方和与立方和问题描
- Codeforces Round 1034 (Div. 3) G解题思路
拉长时间线
数据结构与算法算法数据结构c++
链接Problem-G-Codeforces题目大意给定n,m,q分别为数组大小,数组的每个数非负且小于m,要进行q次操作操作分为两种:1.令a[i]=x(永久性)2.输入一个k,对于每个a[i]都可进行任意次操作a[i]=(a[i]+k)%m,对数组进行操作,判断能否增厚变成一个非严格递增数组题目思路对样例进行分析可以发现对于每个a[i]可以分为g=gcd(m,k)类,可以为每一类标号,号码为a
- 《二分枚举答案(配合数据结构)》题集
英雄哪里出来
数据结构图论英雄算法联盟算法
文章目录1、模板题集2、课内题集3、课后题集1.字符串哈希2.并查集3.ST表1、模板题集分巧克力2、课内题集倒水冶炼金属连续子序列的个数3、课后题集括号内的整数代表完整代码行数。1.字符串哈希你猜猜是啥题(60)2.并查集拯救萌萌(72)3.ST表GCD不小于K的子数组(111) 本题集为作者(英雄哪里出来)在抖音的独家课程《英雄C++入门到精通》、《英雄C语言入门到精通》、《英雄Python
- 前缀和与后缀和(HDU6186)
MatrixYg
HDU水题
题目链接。题目的大意是:给一个数组,和一个数组的下标·,然后在数组中去掉这个下标对应的元素,把剩下的元素全部做&/|/^这三种位运算,输出位运算之后的结果。数据范围1e5.当然暴力是不可行的。首先需要知道的是:一个数&自己不变,|自己也是不变,^自己是0。这样我们对于每一种运算维护两个数组,一个前缀数组,一个后缀数组。这样两个结合起来可以达到去除任意一个中间元素的效果。//我们只证明一种情况,其他
- ubuntu 22.04 ssh开启root用户远程登录
allix123
ubuntussh服务器
1.进入ubuntu系统后,切换成root用户sudosu输入密码,切换成功之后。修改root的密码passwdroot输入新密码2.用vim工具修改sshd_configcd /etc/sshvimsshd_config找到#PermitRootLoginprohibit-password修改为:PermitRootLoginyes保存文件3.重启sshd服务servicesshdrestart
- C语言:最大公约数
C羊驼
C语言学习c语言算法开发语言
最大公约数(GCD)是指能够同时整除两个或多个整数的最大正整数。给定两个整数aa和bb(不同时为0),它们的最大公约数gcd(a,b)gcd(a,b)是满足以下条件的最大正整数dd:dd能整除aa(即amod d=0amodd=0)。dd能整除bb(即bmod d=0bmodd=0)。对于任何其他满足前两个条件的d′d′,有d′≤dd′≤d。1.辗转相除法(欧几里得算法)原理:gcd(a,b
- C++基础练习-二维数组
s15335
C++练习题c++开发语言
题目:https://acm.hdu.edu.cn/showproblem.php?pid=2022题解:#includeusingnamespacestd;intz[10000][10000];intmain(){intm,n;while(cin>>m>>n){intx,max=-1,l,c;//往数组里添加数据for(inti=0;i>z[i][j];}}//遍历数组并找出最大值for(int
- 数据结构-顺序表-数值统计
题目:https://acm.hdu.edu.cn/showproblem.php?pid=2008解答:#includeusingnamespacestd;#defineSLDataTypedoublestructSequlist{SLDataType*array;intsize;intcapacity;};//********************顺序表初始化***********/void
- 扩展欧几里德算法 递归法 递推法 手算法 原理及实现
黎哩吖
算法人工智能机器学习
扩展欧几里德算法递归法递推法手算法原理及实现顾名思义,扩展欧几里德算法是在欧几里德算法基础上扩展的算法.欧几里德算法和扩展欧几里德算法在用途上的区别:欧几里德算法(gcd):即求两个整数的最大公约数.扩展欧几里德算法:用于求乘法逆元.用于求贝组等式的一个解.欧几里德算法即辗转相除法.C语言实现:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}注意此算法的终止条
- 手算逆元及手动模拟扩展欧几里得算法及思路推导
一上午的一个小推导先给出exgcd的代码吧intexgcd(inta,intb,int&x,int&y){///x,y起初不知道,是递归往上求解x,yif(b==0){x=1,y=0;returna;///两处return}intd=exgcd(b,a%b,x,y);inttmp=x;x=y,y=tmp-(a/b)*y;returnd;///记得要返回d啊///【a*x+b*y=1中,x是a在模b
- 扩展欧几里得算法&乘法逆元
GZkx
数论之旅简单题乘法逆元
扩展欧几里得算法——exgcd主要有两个重要的用途:1.求乘法逆元(下面的例题就是)a*b%mod==1->a与b互为在mod意义下的逆元2.求二元一次线性方程exgcd(a,b,x,y)即为a,b的最大公约数,,令gcd(a,b)=a*x+b*y,则x,y也可以得出来了不懂gcd(最大公约数)的童鞋可以先了解一下哦Description给出2个数M和N(M#include#includeusin
- 欧几里得算法与扩展算法
欧几里得算法(EuclideanAlgorithm)欧几里得算法(也称为辗转相除法)是一种查找两个正整数aaa和bbb的最大公约数的方法。最大公约数(GCD-GreatestCommonDivisor),另一个名字是HCF(HighestCommonFactor)。例子1:令a=210a=210a=210,b=45b=45b=45210‾=45‾∗4+30‾45‾=30‾∗1+15‾30‾=15‾
- 15国B组C++蓝桥杯真题
KuaCpp
蓝桥杯职场和发展
P10907[蓝桥杯2024国B]蚂蚁开会#includeusingnamespacestd;typedeflonglongll;constintN=520;intux[N],uy[N],vx[N],vy[N];map,int>mp;intgcd(inta,intb){if(b==0)returna;returngcd(b,a%b);}voidsolve(inti){intdx=vx[i]-ux[
- [蓝桥杯 2024 国 Java B] 美丽区间
N_NAN_N
java算法
问题描述美丽区间是这样的一组区间:[L1,R1]、[L2,R2]、[L3,R3]..构造美丽区间需要满足以下条件:L1=1Li≤RiRi−Li≥K对于任意的i>1,有Li=Ri−1+1gcd(Li,Ri)=1,其中gcd指两个数的最大公约数在满足上述条件的情况下,Li、Ri之间的差尽可能的小。输入格式第一行输入一个整数K。第二行输入一个整数T,表示有T组测试用例。接下来T行,每行输入一个整数n。输
- Leetcode 3574. Maximize Subarray GCD Score
Espresso Macchiato
leetcode笔记leetcode3574leetcodehard最大公约数动态规划
Leetcode3574.MaximizeSubarrayGCDScore1.解题思路2.代码实现题目链接:3574.MaximizeSubarrayGCDScore1.解题思路这一题是基于deepseek的实现上面搞定的,虽然deepseek事实上也是超时……我的直接思路就是动态规划,但是那样是会直接超时的,而deepseek的解决方式是首先找出所有可能的最大公约数,然后考察其对应的score,
- 算法-数论
cx_2023
算法c++开发语言
C-小红的数组查询(二)_牛客周赛Round95思路:不难看出a数组是有循环的d=3,p=4时,a数组:1、0、3、2、1、0、3、2.......最小循环节为4,即最多4种不同的数d=4,p=6时,a数组:1、5、3、1、5、3.......最小循环节为3d=4,p=10时,a数组:1、5、9、3、7、1、5、9、3、7.......最小循环节为5可以得出,最小循环节T=p/gcd(d,p)an
- 图论500题 慢慢写
daydreamer23333
题目来源https://blog.csdn.net/ffq5050139/article/details/7832991这篇博客用来记录自己刷的图论题先占个坑所有题目都来自上面的链接会慢慢更新基础一点的题会记录一下表示ac了好题会单独写一篇博客知识点题目名称,oj和题号并查集1.HowManyTablesHDU-1213(简单模板题)并查集2.小希的迷宫HDU-1272(毒瘤输入wa了一年最后发现
- Codeforces Round #509 (Div. 2) 题解
Tawn0000
CodeforcesRound#509(Div.2)
题目传送门A.Heist水题,扫一遍然后记录最大值和最小值,ans=max-min+1-n;#includeusingnamespacestd;intmain(){intn;scanf("%d",&n);intmaxa=0,mina=0x3f3f3f3f;for(inti=0;iusingnamespacestd;typedeflonglongLL;LLgcd(LLa,LLb){returnb==
- HDU-2973-YAPTCHA(威尔逊定理)
Herod_
算法练习数论数论
YAPTCHAProblemDescriptionThemathdepartmenthasbeenhavingproblemslately.Duetoimmenseamountofunsolicitedautomatedprogramswhichwerecrawlingacrosstheirpages,theydecidedtoputYet-Another-Public-Turing-Test-t
- HDU-2973 YAPTCHA
STY_fish_2012
数学素数筛
题目传送门先把题目中的公式弄过来。Sn=∑k=1n⌊(3k+6)!+13k+7−⌊(3k+6)!3k+7⌋⌋S_n=\sum\limits_{k=1}^{n}\lfloor\frac{(3k+6)!+1}{3k+7}-\lfloor\frac{(3k+6)!}{3k+7}\rfloor\rfloorSn=k=1∑n⌊3k+7(3k+6)!+1−⌊3k+7(3k+6)!⌋⌋首先,得先了解威尔逊定理威
- 计算机类专业学生重要竞赛刷题网站
花开盛夏^.^
大学生竞赛大学生计算机类专业专业竞赛
团队队员常用:Codeforceshttp://codeforces.com/problemset牛客网https://www.nowcoder.com/ta/acm-training/刷题链接:http://poj.org/pojhttp://www.spoj.com/http://acm.hdu.edu.cn/hduhttps://cn.vjudge.net/vj(包含大部分网站的题库)htt
- Codeforces Round 1023 (Div. 2) (A-D)
Null_Resot
题解系列深度优先算法蓝桥杯学习c++
每周至少五篇博客:(1/5)A.LRCandVIP题意您有一个大小nnn的数组aaa-a1,a2,…ana_1,a_2,\ldotsa_na1,a2,…an。您需要将nnn元素分为222序列BBB和CCC,以满足以下条件:每个元素恰好属于一个序列。两个序列BBB和CCC至少包含一个元素。gcd\gcdgcd(B1,B2,…,B∣B∣)≠gcd(C1,C2,…,C∣C∣)(B_1,B_2,\ld
- c语言 数值传递错误,错误:无效值不被忽略 - 在简单的c程序
不中顶会不改名
c语言数值传递错误
我是新来编程c。当运行下面的代码,我收到以下错误与在=一个小箭头指向登录:错误:无效值不被忽略-在简单的c程序错误:不被忽略,因为它空值应该是*GCD=gcd_lcm((乘数1%乘数2),factor2,gcd,lcm);我试图按照向另一篇文章中找到的void类型返回值的步骤进行操作,但似乎无法在我的代码中工作。有人可以帮我指出我的错误吗?非常感谢。#includevoidgcd_lcm(intf
- 4.Cantor表(升级版)
信息学奥赛-Mr-H
信息学奥赛-递归专题c++算法蓝桥杯
Cantor表(升级版)-洛谷解题思路:(1)根据题目可以得出,分子的大小表示所在的行数,分母的大小表示所在的列数,那么只需要求出两个分数的乘积即可(2)利用递归求解两个数的最大公约数,然后对结果进行约分即可#includeusingnamespacestd;intgcd(intx,inty){if(x%y==0)returny;elsereturngcd(y,x%y);}intmain(){in
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。