codeforces1096E The Top Scorer

codeforces

基础组合数学练习题/cy

按照题面描述,不难想到枚举\(a_1\)的大小\(x\)和值为\(x\)的数的个数\(y\),不难写出获胜概率如下

\[ \sum_{x=r}^s\sum_{y=1}^p\frac{1}{y}\dbinom{p-1}{y-1}f(p-y,s-xy,x) \]

其中\(f(n,m,x)\)表示\(n\)个互不相同的盒子\(m\)个球,每个盒子的球数小于\(x\)的方案数。这个经典问题考虑容斥有多少个一定大于等于\(x\),则有
\[ f(n,m,x)=\sum_{i=1}^n(-1)^i\dbinom{n}{i}g(m-xi,n) \]

\(g(n,m)\)则表示将\(m\)个球放入互不相同的\(n\)个盒子的方案数,为\(\dbinom{m+n-1}{n-1}\)

最后不要忘记除上总共的情况数\(g(s-r,p)\),同时注意一些边界问题

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
typedef long double db;
typedef pair pii;
const int N=5100;
const db pi=acos(-1.0);
#define lowbit(x) (x)&(-x)
#define sqr(x) (x)*(x)
#define rep(i,a,b) for (register int i=a;i<=b;i++)
#define per(i,a,b) for (register int i=a;i>=b;i--)
#define fir first
#define sec second
#define mp(a,b) make_pair(a,b)
#define pb(a) push_back(a)
#define maxd 998244353
#define eps 1e-8
int p,s,r;
ll c[5120][5120];

int read()
{
    int x=0,f=1;char ch=getchar();
    while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
    while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
    return x*f;
}

void init()
{
    rep(i,0,N)
    {
        c[i][0]=1;
        rep(j,1,i) c[i][j]=(c[i-1][j-1]+c[i-1][j])%maxd;
    }
}

ll calc(int n,int m,int lim)
{
    if ((!n) && (!m)) return 1;
    ll ans=0;
    rep(i,0,n)
    {
        if (i*lim>m) break;
        ll tmp=c[n][i]*c[m-i*lim+n-1][n-1]%maxd;
        if (i&1) ans=(ans+maxd-tmp)%maxd;else ans=(ans+tmp)%maxd;
    }
    return ans;
}

ll qpow(ll x,int y)
{
    ll ans=1;
    while (y)
    {
        if (y&1) ans=ans*x%maxd;
        x=x*x%maxd;y>>=1;
    }
    return ans;
}

int main()
{
    p=read();s=read();r=read();
    init();ll ans=0;
    rep(x,r,s)
    {
        if (x*ps) || ((p-y)*(x-1)+y*x

转载于:https://www.cnblogs.com/encodetalker/p/11441240.html

你可能感兴趣的:(codeforces1096E The Top Scorer)