- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- 基于langchain的法律助手工作流的搭建
一尾清风915
langchain语言模型python人工智能chatgptai
该工作流有四个llm组成,包括三个worker以及一个planner。planner用于识别用户输入,将其划分为具体任务并调用相应的worker。worker则根据输入进行工作,三个worker分别用于法条翻译,法条查询以及案例分析。其中planner、lawtrans、lasearch使用的都是gpt4,embedding模型使用的是openai的text-embedding-ada-002。c
- 指数计算机在线使用,ffmi(在线ffmi指数计算器)
带虾条酱
指数计算机在线使用
我们可用FatFreeMassIndex(FFMI)无脂肪重量指数来做为一个衡量肌瘦肉量的基准。不像BMI会把脂肪算到重量里,FFMI在测量进展和潜力上是更有实用性的。FFMI的.彭于晏的体型用FatFreeMassIndex(FFMI)无脂肪重量指数来看应该是处于20左右,而26是不依赖药物所能达到的极限了,所以算是很不错的了。专业健美运动员都是用.首先讲一点,当年的施瓦辛格也是使用固醇类药物的
- Python 安装使用 tesseract OCR 识别中文
花果山总钻风
Python/FlaskLinuxpythonocr开发语言
前言:i、中文识别效果更好的开源OCR库:CnOCR使用教程ii、6款开源中文OCR使用介绍(亲测效果):点我查看iii、windows安装tesserract教程:windows安装:点我查看教程1、点我查看教程2windows安装完成,设置好环境变量后,报找不到路径的错误点这里:解决办法本文为CentOS下安装教程Tesseract的OCR引擎目前已作为开源项目发布在GoogleProject
- 人类编程时代即将终结?OpenAI首席产品官预测AI将在今年底全面超越人类程序员
前端javascript
ReactHook深入浅出CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读近日,OpenAI首席产品官KevinWeil在接受采访时表示,人工智能的发展速度远超预期,今年底就有可能在编程领域永久性地超越人类程序员。这一观点立即引发了行业热议,也让程序员们对未来产生了深刻的思考。人工智能的进展速度远超想象在与VarunMayya和TanmayBhat共同主持的YouTube节目《O
- Python中Tesseract OCR的中文识别包实操指南
本文还有配套的精品资源,点击获取简介:TesseractOCR是一个开源的光学字符识别引擎,支持多语言包括中文识别。介绍如何在Python中使用pytesseract库进行图像文字识别,并详细说明安装TesseractOCR以及其中文语言包的步骤。提供了一个Python示例代码来展示图像识别的流程,并解释如何通过预处理提高识别准确率。此外,概述了TesseractOCR的高级功能和训练自定义模型的
- 一封邮件读懂准确率、精准率、召回率、F1 Score
fairymt
产品经理的AI秘籍AIGC人工智能AI作画chatgptai
文章目录场景设定核心目标定义样本类别模拟评估结果四大核心指标详解①准确率(Accuracy)②精准率(Precision)③召回率(Recall)④F1Score如何选对指标?总结场景设定场景:公司开发了一个AI邮箱垃圾邮件(Spam)过滤器。我要评估这款AI垃圾邮件过滤器,判断它是否“合格”。核心目标核心目标:我们希望它能尽可能识别出所有垃圾邮件(别放过坏人);尽量不误伤正常邮件(不冤枉好人)。
- Java类加载器深度解析:从原理到实践
前言在Java的世界里,我们编写的每一行代码,最终都会被编译成.class文件,然后由Java虚拟机(JVM)执行。然而,这些.class文件是如何被JVM识别并运行起来的呢?这背后离不开一个至关重要的机制——类的加载器(ClassLoader)。类加载器是Java虚拟机的重要组成部分,它负责在运行时动态地加载Java类到JVM的内存空间中。理解类加载器不仅能帮助我们深入JVM的运行机制,还能在实
- FastGPT与MCP:解锁AI新时代的技术密码
挑战者666888
AI模型应用实战迁移学习集成学习文心一言
一、AI浪潮中的新星:FastGPT与MCP登场在当今科技飞速发展的时代,人工智能(AI)已成为推动各行业变革的核心力量。从智能语音助手到复杂的图像识别系统,AI的应用无处不在,而其中的关键技术——语言模型和集成平台,更是备受关注。FastGPT和MCP(Multi-ComponentPlatform)作为这一领域的新兴代表,正逐渐崭露头角,为AI的发展注入新的活力。FastGPT,以其高效的推理
- 推客小程序系统开发全解析:从概念到落地的完整指南
ywyy6798
小程序微信小程序推客分销推客系统推客小程序短剧系统推客系统开发
一、推客小程序概述:新时代社交电商利器推客小程序是近年来在社交电商领域兴起的一种创新型营销工具,它结合了小程序轻量级、易传播的特点与社交裂变营销的强大势能,为企业提供了一种低成本、高效率的用户增长和商品销售解决方案。核心价值体现:用户裂变引擎:通过社交分享激励机制,实现用户几何级数增长销售转化加速器:缩短用户从认知到购买的路径,提升转化率私域流量沉淀池:帮助企业构建可持续运营的用户资产数据驱动决策
- 《短剧系统开发实战:架构设计、智能推荐与商业变现全解析》
wx_ywyy6798
短剧推客系统海外短剧java短剧系统短剧系统开发短剧分销系统
一、短剧市场迎来黄金发展期:机遇与挑战并存近年来,随着移动互联网的深度普及和用户碎片化娱乐需求的激增,短剧市场正呈现爆发式增长态势。根据权威机构最新统计数据显示,2023年中国短剧市场规模已突破180亿元,用户规模超过3.5亿,预计到2025年市场规模将达到500亿元,年复合增长率保持在58%以上。这一市场快速增长的背后,是多重因素的共同推动:用户习惯变迁:现代人生活节奏加快,平均单次娱乐时长缩短
- Telerik Document Processing Crack
TelerikDocumentProcessingCrackTheTelerikDocumentProcessingLibraries2025Q2updateenhancesthePDFprocessinglibrarywithsupportforopticalcharacterrecognition(OCR).TelerikDocumentProcessingisasuiteofdocument
- 数字孪生:变电站监测和运维的智能化实践
数字孪生家族
数字孪生视频孪生数据可视化
随着夏季高温天气的到来,我国用电也迎来了高峰。用电负荷持续走高,对全国各地电网运维也迎来了挑战。电力系统作为现代社会的基础设施,其稳定性和可靠性至关重要,变电站则是实现电力系统电力互联互通的枢纽。在传统变电站中,由于依赖人工巡检和定期维护,存在效率低下和响应迟缓等问题。大量的人力投入,同时也使违章操作、疏忽大意等众多人为操作失误隐患大大提升。近年来,我国在智慧电网建设方面取得了显著成果,其中最为典
- Django REST framework - 权限
djangopython
权限认证或识别本身通常不足以获得信息或代码的访问权限。为此,请求访问的实体必须具有授权。—Apple开发者文档权限、认证和限流共同决定了请求是否应该被允许访问。权限检查总是在视图的主要逻辑开始之前运行。权限检查通常会使用request.user和.authrequest属性中的认证信息来确定传入的请求是否应该被允许。权限用于授予或拒绝不同类别的用户访问API的不同部分。RESTframework中
- 集装箱智慧通关系统如何用AI技术重塑物流效率?
在全球贸易和物流高速发展的今天,港口、物流园区及企业的闸口管理面临巨大挑战——如何提升通关效率、保障货物安全并降低运营成本?集装箱智慧通关系统依托先进的AI视觉识别、物联网及大数据技术,为行业提供了智能化解决方案。核心技术:AI视觉+物联网赋能传统闸口依赖人工核验集装箱号、车辆信息,效率低且易出错。而智慧通关系统通过高精度摄像头+AI算法,可自动识别集装箱编号、货车车牌、货物类型等关键信息,准确率
- 微软服务器安全问题
国际云1688
微软云云计算服务器云原生运维azure
微软云服务器安全深度解析:挑战、应对与未来展望——构建韧性“安全之盾”的持续博弈!在当今数字化时代,云计算已成为众多企业和组织运行业务的核心基础设施和“数字生命线”,而微软云(Azure)作为全球领先的云服务提供商之一,其安全性无疑是全球数十万企业客户最为关注的焦点。然而,近年来,我们不得不承认,微软云服务器却频繁出现安全事故,从配置错误引发的数据泄露到DDoS攻击下的防护困境,再到软件更新导致的
- 高通量多因子检测赋能胰腺癌生物标志物发现与临床转化
LabEx
Luminex液相芯片胰腺癌多因子检测斑蝥素乐备实labex科研服务
研究背景:胰腺癌作为恶性程度极高的消化系统肿瘤,其死亡率与发病率近乎持平的临床特征始终是医学领域的重大挑战。与多数癌症生存率稳步提升的趋势不同,胰腺癌的诊疗进展长期滞后——超过50%的患者确诊时已处于疾病晚期,对传统放化疗方案呈现显著耐药性。据美国2017年流行病学数据显示,胰腺癌患者5年相对生存率仅8%,尽管男性患者生存率呈现年均0.3%的微弱提升,但整体预后仍处于恶性肿瘤谱系的最底端,临床对创
- 【AI】AI大模型发展史:从理论探索到技术爆发
不想当程序汪的第N天
AI人工智能
一、早期探索阶段—理论与技术奠基1.1符号主义与连接主义的博弈20世纪50-70年代,符号主义AI主导研究方向,通过专家系统模拟人类逻辑推理,但受限于计算能力和数据规模。80年代连接主义AI兴起,以神经网络为核心,反向传播算法的提出为深度学习奠定基础。1.2神经网络初步实践1980年:卷积神经网络(CNN)雏形诞生1998年:LeNet-5模型成功应用于手写数字识别,成为首个商用深度学习模型关键局
- (Note)音频向量化表示
音频向量化表示经典语音特征(MFCC等)语音信号的传统特征提取方法包括MFCC(梅尔倒谱系数)、PLP等,用于描述语音的频谱包络信息。这些特征设计依据生理听觉模型,在ASR、情感识别等任务中长期有效。但它们仍属浅层特征,无法自动学习更高阶的语言和语音信息,对说话人和环境的鲁棒性有限,通常需配合复杂模型来提高性能。梅尔倒谱系数特征示意图自监督语音模型(Wav2Vec、HuBERT等)近年来,语音领域
- 如何确保京东商品数据采集的准确性和及时性?
电商数据girl
电商ERP项目接口京东API接口数据库java开发语言python大数据爬虫
为确保京东商品数据的准确性和及时性,需从数据源选择、采集策略优化、反爬机制应对、数据验证等多维度实施系统性方案。以下是具体措施:一、确保数据准确性的核心方法1.优先选择官方可靠数据源使用京东开放平台API:官方API(如商品详情接口、价格接口)直接对接京东数据库,数据误差率极低。需注意按接口规范申请权限(如商品数据需通过“商品API”获取),避免因非官方渠道解析导致字段错位(如误将促销价识别为原价
- 《短剧平台开发指南:技术方案、核心功能与行业趋势》
wx_ywyy6798
短剧系统推客系统开发java短剧系统开发海外短剧短剧分销系统短剧
一、短剧行业现状与系统开发价值近年来,短剧市场呈现爆发式增长,成为数字内容领域的新风口。数据显示,2023年国内短剧市场规模已突破300亿元,用户规模达到4.5亿。这种以"短、平、快"为特点的内容形式,凭借其紧凑的剧情节奏和高度沉浸的观看体验,正在重塑用户的娱乐消费习惯。短剧系统开发的核心价值在于构建一个完整的生态闭环,实现从内容创作、制作、分发到变现的全流程数字化管理。一个优秀的短剧系统能够显著
- Cursor黑科技:AI编程实战技术文章
yuehui001
科技AI编程
引言概述AI编程工具的发展现状Cursor在AI编程领域的独特定位文章目标:展示Cursor的核心功能与实战应用Cursor的核心功能解析智能代码补全:基于上下文的代码生成能力自然语言转代码:通过对话式交互生成完整功能模块代码重构与优化:自动化识别并改进代码质量错误诊断与修复:实时分析代码逻辑并提供解决方案实战场景一:快速原型开发需求描述转化为可执行代码的流程示例:构建一个简易待办事项应用对比传统
- 2025 年 6 月底大模型产品进展与现状
AIGC前沿技术探索
大模型技术与产品前沿探索大模型
上半年,各大厂商完成了从“秀肌肉”(展示模型能力)到“上货架”(推出可用产品和平台)的关键转变。市场的讨论焦点也从“哪个模型更强”转向了“哪个产品更好用,哪个生态更完善”。以下是最新的全局态势:1.三大闭源巨头的“产品全家桶”之争竞争已经不再是单一模型的对决,而是平台级、生态级的对抗。OpenAI、Google和Anthropic的产品线都已成型,并展现出清晰的战略分野。公司(Company)核心
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- PaddleOCR实例化 OCR 对象的参数介绍
云天徽上
PaddleOCRpythonocr开发语言人工智能文字识别
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 最新人工智能硬件培训AI基础入门学习课程参考2025版(离线AI语音视觉识别篇)
聆思科技AI芯片
聆思大模型开发板实践分享语音识别人机交互人工智能视觉检测嵌入式硬件mcuAI编程
前言端侧离线AI智能硬件作为AI技术的重要载体之一,凭借其无需依赖网络即可实现智能功能的特性,在一些网络条件受限或对数据隐私有较高要求的场景中,发挥着不可或缺的作用。本章基于CSK6大模型语音视觉开发板开箱即用的离线AI能力,分类列出学习课程知识点和实操参考,希望能够帮助大家快速掌握离线AI智能硬件的基础知识与实战技能,同时了解相关AI技术在实际场景的应用情况。正文按入下框架展开,相关理论和实操除
- webpack配置
panda4919
webpack前端node.js
一.基础配置:1.为什么需要打包:开发时,我们会使用框架(React、Vue),ES6模块化语法,Less/Sass等css预处理器等语法进行开发。这样的代码要想在浏览器运行必须经过编译成浏览器能识别的JS、Css等语法,才能运行。所以我们需要打包工具帮我们做完这些事。除此之外,打包工具还能压缩代码、做兼容性处理、提升代码性能等。2.有哪些打包工具:GruntGulpParcelWebpackRo
- AI 落地企业 70 问:从入门到避坑,一篇搞定所有难题
大模型知识
人工智能知识图谱开发语言产品经理chatgpt大模型
“AI很火,但你的企业用对了吗?”近年来,AI技术风靡全球,许多企业纷纷投身其中,试图通过AI实现降本增效、创新突破。然而,AI的落地并非一帆风顺——从认知误区到技术选型,从数据基础到组织变革,每一步都充满挑战。你是否也面临这些问题:企业如何从零开始构建AI能力?AI项目的成本和ROI如何评估?信息部门如何应对AI带来的技术变革?AI落地过程中有哪些“坑”需要避开?为此我们整理了70个AI在企业落
- 8 [GitHub开源项目被投毒后门病毒跟随开发流程传播蔓延]
学编程的闹钟
GitHubgithub开源
现如今,代码的开放给软件开发提供了诸多便利,GitHub就是其中极具代表性的平台。然而随着“开放”逐渐广泛,其被恶意利用的风险也随之增加。近年来,一种隐蔽又危险的攻击手段——代码投毒,悄悄成了威胁开发者和用户安全的隐患。攻击者会在开源项目或代码库里植入有害代码,这些看似正常的代码,一旦被开发者无意中引入,就会在开发链条中蔓延,最终让用户也面临安全风险。近期,火绒威胁情报中心监测到一批GitHub投
- 噪声预测 vs. 数据预测:扩散模型中的目标函数选择与生成表现对比
观熵
扩散模型工程指南机器学习算法人工智能
噪声预测vs.数据预测:扩散模型中的目标函数选择与生成表现对比关键词:噪声预测、数据重建、MSELoss、ELBO、score-basedmodeling、DDPM、EDM、训练目标、采样策略摘要:扩散模型的训练目标设计直接影响模型收敛速度、生成质量与采样路径稳定性。最初的DDPM采用了预测添加噪声ε的方法,但近年来诸如EDM(ElucidatedDiffusionModels)等模型开始转向对原
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio