- 已解决:python多线程使用TensorRT输出为零?附tensorrt推理代码
李卓璐
算法实战python开发语言
我是多个不同类型的模型多线程调用报错。设备:cuda12.1,cudnn8.9.2,tensorrt8.6.11.问题tensorrt的推理没输出???有输入:想要的输出:原因:多进程时,每进程应单独调用importpycuda.driverascuda和cuda.init(),完成初始化CUDA驱动,并需要使用self.cfx.push()和self.cfx.pop()管理CUDA上下文,以保证
- Ubuntu20.04 RTX4060 AI环境搭建
stxinu
人工智能人工智能
下面记录在Ubuntu20.04环境下,使用ASUSATS-RTX4060-O8G-V2显卡,搭建NvidiaTensorRT开发环境。1.安装步骤0)准备工作使用如下命令创建我们的工作目录:mkdir~/nvidia再使用如下命令进入到上面的目录(接下来的步骤,如无特殊说明,均在该目录下进行):cd~/nvidia1)安装CUDA下载并安装NVIDIACUDAToolkit:wgethttps:
- CMake Error at myplugins_generated_yololayer.cu.o.Debug,tensorrtx编译失败解决
雪可问春风
BUG人工智能
system:ubuntu1804gpu:3060cuda:cuda11.4tensorrt:8.4使用项目tensorrtx进行yolov5的engine生成,之前在编译成功的配置为system:ubuntu1804gpu:2060cuda:cuda10.2tensorrt:7.2.3.4换到3060后,make失败,报错错误:/home/yfzx/work/vs-work/tensorrt-y
- TensorRT-LLM保姆级教程-快速入门
大模型八哥
笔记agiai大模型ai大模型LLMTransformer
随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。另外,我撰写的大模型相关的博客及配套代码均整理放置在Github,有需要的朋友自
- 本地部署时,如何通过硬件加速(如 CUDA、TensorRT)提升 DeepSeek 的推理性能?不同显卡型号的兼容性如何测试?
百态老人
人工智能科技算法vscode
本地部署DeepSeek模型的硬件加速优化与显卡兼容性测试指南一、硬件加速技术实现路径CUDA基础环境搭建版本匹配原则:根据显卡架构选择CUDA版本(如NVIDIARTX50系列需CUDA12+,V100需CUDA11.x),并通过nvcc--version验证安装。GPU加速验证:运行以下代码检查硬件加速状态:importtensorflowastfprint("可用GPU数量:",len(tf
- 人工智能 - TensorRT与DeepDP终极指南:释放GPU潜能的深度学习推理优化之道
天机️灵韵
具身智能VLA人工智能人工智能算法深度学习pytorch
TensorRTTensorRT(TensorRuntime)是英伟达(NVIDIA)推出的高性能深度学习推理(Inference)优化器和运行时库,专为在NVIDIAGPU上高效部署深度学习模型而设计。它通过模型压缩、计算图优化、硬件级加速等技术,显著提升推理速度并降低资源消耗,广泛应用于自动驾驶、工业检测、实时视频分析等对延迟敏感的领域。一、TensorRT的核心功能模型优化与加速层融合(La
- onnx处理和TensorRT量化推理相关代码工具
天亮换季
人工智能算法深度学习
一.说明 在模型量化过程中,经常要使用一些工具对onnx或者量化后的模型(这里以TensorRT为例)进行推理,往往需要一些处理工具,比如:拆分或者合并onnx;修改onnx中的量算子QuantizeLinear的scale值;以及使用onnxruntime进行推理;TensorRT的序列化文件的inference;隐式量化生成量化校准表…现提供一些封装好的工具,作为记录,方便日后查阅使用"
- CUDA12.1 cudnn9.0.1 python3.10.12配置TensorRT8.6.1,完成yolov12tensorRT推理完整过程
李卓璐
算法实战YOLO
一、配置TensorRT8.6.11.下载TensorRT8.6.1包TensorRT完全依赖CUDA,因此下载其版本时一定要考虑CUDA的版本。具体应该下载哪一版本的TensorRT呢,这里我问的秘塔AI,你们也可以问问它。官网地址-tensorRT8.6.1安装包下载2.解压安装包这里要注意,如果你和我一样是给win下的但是要在Linux服务器上使用。千万不要在win的环境下进行安装包的解压操
- ONNX GraphSurgeon详细介绍
Lntano__y
模型部署算法
ONNXGraphSurgeon(ONNX-GS)是一个用于操作和修改ONNX(OpenNeuralNetworkExchange)模型图的Python库。它允许开发者在ONNX模型的图结构中进行修改、优化、插入节点、删除节点以及其他图结构操作,是在深度学习推理部署过程中非常有用的工具。ONNXGraphSurgeon常用于TensorRT中,用来优化和调整ONNX模型,以便于模型可以高效地在GP
- Jetson系列: tensorrt-python推理yolov5(一)
weixin_55083979
jetson系列YOLOpytorch深度学习
目录一.onnx模型导出二.TensorRT模型本地序列化三.算法整体Pipline架构四.算法整体Pipline实现一.onnx模型导出在使用tensorrt进行加速之前需要将自己的torch模型转为onnx格式的,这个操作很基础就不赘述了,自己根据自己的任务、部署设备选择合适的batch/infersize/opsetyolov5官方导出onnx脚本Example:```pythonfromp
- 【深度学习模型高效部署】tensorRT_Pro深度解读:部署深度学习模型的高效方案
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习深度学习人工智能tensorRT_ProTensorRT高性能推理机器学习模型部署
以下内容将对tensorRT_Pro项目做一个系统的介绍,包括其核心价值、主要功能、应用案例以及关键的示例代码(附详细解释),帮助你快速了解并上手如何基于TensorRT在NVIDIAGPU上实现高性能推理。一、项目概述GitHub-shouxieai/tensorRT_Pro:C++librarybasedontensorrtintegrationtensorRT_Pro是由开发者shouxie
- 【yolov8】模型导出----pytorch导出为onnx模型
栗子风暴
YOLOpytorch人工智能深度学习
【yolov8】模型导出一、为什么要使用yolo的导出模式二、确保安装必要的库:三、yolov8模型导出3.1不同格式配置参数3.2导出格式四、导出模型性能优化4.1使用TensorRT导出模型有什么好处?4.2导出YOLOv8模型时,如何启用INT8量化?4.3为什么输出模型时动态输入尺寸很重要?4.4优化模型性能需要考虑哪些关键的导出参数?五、问题六、疑问训练模型的最终目标是将其部署到实际应用
- C++使用Onnxruntime/TensorRT模型推理
奇华智能
AIc++开发语言人工智能AI计算机视觉
onnxruntime和tensorrt是我们常用的两种推理方式,下面整理了两个推理示例,仅供参考。步骤流程模型训练,python下生成pytorch的模型.pth,并基于.pth模型进行推理python下依据模型推理实现从.pth转向.onnxpython下基于.onnx进行推理,与后续两种推理方式种的推理结果进行比较环境windows10+RTX308015GB显存cuda11.3onnxru
- cap4:YoloV5的TensorRT部署指南(python版)
我是一个对称矩阵
TensorRT全流程部署指南YOLOpython人工智能TensorRT模型部署
《TensorRT全流程部署指南》专栏文章目录:《TensorRT全流程部署指南》专栏主页cap1:TensorRT介绍及CUDA环境安装cap2:1000分类的ResNet的TensorRT部署指南(python版)cap3:自定义数据集训练ResNet的TensorRT部署指南(python版)cap4:YoloV5目标检测任务的TensorRT部署指南(python版)cap5:YoloV5
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
人工智能
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
pytorch人工智能python
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- [C#]C#使用yolov8的目标检测tensorrt模型+bytetrack实现目标追踪
FL1623863129
深度学习c#YOLO目标检测
【测试通过环境】win10x64vs2019cuda11.7+cudnn8.8.0TensorRT-8.6.1.6opencvsharp==4.9.0.NETFramework4.7.2NVIDIAGeForceRTX2070Super版本和上述环境版本不一样的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:TensorRT-CSharp-API/src/T
- c++加载TensorRT调用深度学习模型方法
feibaoqq
深度学习深度学习YOLO
使用TensorRT来调用训练好的模型并输出结果是一个高效的推理过程,特别是在需要低延迟和高吞吐量的应用场景中。以下是一个基本的步骤指南,展示了如何在C++中使用TensorRT进行推理。步骤1:准备环境安装TensorRT:确保你已经安装了NVIDIATensorRT库。准备模型:确保你的训练好的模型已经转换为TensorRT支持的格式,通常是一个.engine文件。你可以使用onnx-tens
- tensorrt推理 onxx转engine代码(python),cyclegan网络推理(python、C++)
maobin_1
pythonc++
将onnx文件导出为engine,FP16格式importtensorrtastrtimportpycuda.driverascudaimportpycuda.autoinit#加载ONNX文件onnx_file_path='model.onnx'engine_file_path='model_tesfp16.trt'TRT_LOGGER=trt.Logger(trt.Logger.WARNI
- 模型实战(19)之 从头搭建yolov9环境+tensorrt部署+CUDA前处理 -> 实现目标检测
明月醉窗台
#深度学习实战例程目标检测人工智能计算机视觉图像处理YOLO
从头搭建yolov9环境+tensorrt部署实现目标检测yolov9虚拟环境搭建实现训练、推理与导出导出onnx并转为tensorrt模型Python\C++-trt实现推理,CUDA实现图像前处理文中将给出详细实现源码python、C++效果如下:output_video_11.搭建环境拉下官方代码根据配置下载虚拟环境所需包详细步骤如下:
- pytorch深度学习模型推理和部署、pytorch&ONNX&tensorRT模型转换以及python和C++版本部署
机械心
深度学习pythonpytorch
目录1.采用pytorch进行推理2.采用onnx进行推理2.1pytorch转换为onnx2.2onnx推理3.采用tensorrt进行推理(python环境)3.1onnx转engine文件3.2tensorrt推理4.采用tensorrt进行推理(c++环境)5.采用torch2trt进行推理(python环境)在pytorch框架下,可以很方便进行深度学习模型的搭建、训练和保存。当模型训练
- 【Windows/C++/yolo开发部署03】将实例分割模型ONNX导出为 TensorRT 引擎:完整记录
认识祂
CV计算机视觉Ultralyticsyolo实例分割模型部署
【完整项目下载地址】:【TensorRT部署YOLO项目:实例分割+目标检测】+【C++和python两种方式】+【支持linux和windows】资源-CSDN文库目录写在前面环境准备1.使用trtexec将ONNX模型转换为TensorRT引擎2.验证TensorRT引擎2.1TensorRT版本2.2GPU信息2.3TensorRT引擎信息2.4推理请求2.5推理性能2.6警告信息2.7其他
- TensorRT-LLM保姆级教程(一)-快速入门
大模型部署
人工智能transformer产品经理自然语言处理kubernetes大模型LLM
随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。另外,我撰写的大模型相关的博客及配套代码均整理放置在Github:llm-act
- ONNX推理warning: TensorRT does not natively support INT64. Attempting to cast down to INT32.
paradoxjun
人工智能
只想用ONNX进行模型推理,加载时报Warning,加载模型时间也特别长。加载模型的代码:self.session=onnxruntime.InferenceSession(model_path,providers=onnxruntime.get_available_providers())修改为:self.session=onnxruntime.InferenceSession(model_pa
- 通过TenSorRT转换后的engine引擎文件进行验证的脚本
薇憨
深度学习-硬件篇嵌入式硬件mcupython
YOLOv8算法验证pt文件的精度脚本一般都很常见,工程项目里面一般会有importwarningswarnings.filterwarnings('ignore')fromultralyticsimportYOLOif__name__=='__main__':model=YOLO('/best.pt')#权重文件路径model.val(data='/data.yaml',#yaml文件路径spl
- 【TensorRT】引用了NvInferRuntimeCommon.h仍然报找不到ILogger
TechBoL
人工智能
如果编译遇到error:‘ILogger’innamespace‘nvinfer1’doesnotnameatype或者error:‘nvinfer1::ILogger’hasnotbeendeclared可能需要显式的添加#include"NvInfer.h"即只includeNvInferRuntimeCommon.h是不够的。
- nvdia triton server运行pt文件
滑稽的柴犬
神经网络机器学习python
tritonserver默认都是tensorrt推理。但也会出现有操作不支持,导致无法转模型为engine的情况。可以选择直接运行pytorch的pt文件,以下为操作步骤。1.pytorch后端环境编译步骤原理是使用pytorchC++API运行pt文件模型。安装依赖项apt-getinstallpatchelfrapidjson-devpython3-dev构建NGC的PyTorch容器。例如,
- NVIDIA-TensorRT-Python推理
呆呆珝
推理框架python人工智能开发语言
1,前言NVIDIATensorRT进行模型推理的Python实现。TensorRT是一个高性能的深度学习推理优化器和运行时,它能够为深度学习模型提供低延迟和高吞吐量的推理能力。(由于官方文档的使用还是比较简单,也可能自己很菜,参考了别人的文档和自己摸索,写出来这个可以使用的API)2.Python-API推理step1:导入基本库(环境自行配置)#导入TensorRT库importtensorr
- 导出 YOLOv11 模型的详细步骤和说明
old_power
计算机视觉YOLO人工智能计算机视觉
以下是关于如何导出YOLOv11模型的详细步骤和说明:1.导出YOLOv11模型的基本步骤YOLOv11模型可以通过Ultralytics提供的接口轻松导出为多种格式,如ONNX、TensorRT、CoreML等。以下是导出模型的基本步骤:1.1安装Ultralytics库首先,确保已安装Ultralytics库:pipinstallultralytics1.2加载模型并导出使用Python代码加
- 【CUDA-BEVFusion】tool/build_trt_engine.sh 文件解读
old_power
计算机视觉计算机视觉深度学习
build_trt_engine.sh#configuretheenvironment.tool/environment.shif["$ConfigurationStatus"!="Success"];thenecho"Exitduetoconfigurefailure."exitfi#tensorrtversion#version=`trtexec|grep-m1TensorRT|sed-n"s
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l