SparkStreaming_Dstream创建

Spark Streaming原生支持一些不同的数据源。一些“核心”数据源已经被打包到Spark Streaming 的 Maven 工件中,而其他的一些则可以通过 spark-streaming-kafka 等附加工件获取。每个接收器都以 Spark 执行器程序中一个长期运行的任务的形式运行,因此会占据分配给应用的 CPU 核心。此外,我们还需要有可用的 CPU 核心来处理数据。这意味着如果要运行多个接收器,就必须至少有和接收器数目相同的核心数,还要加上用来完成计算所需要的核心数。例如,如果我们想要在流计算应用中运行 10 个接收器,那么至少需要为应用分配 11 个 CPU 核心。所以如果在本地模式运行,不要使用local[1]。

1文件数据源

1.1 用法及说明

文件数据流:能够读取所有HDFS API兼容的文件系统文件,通过fileStream方法进行读取,Spark Streaming 将会监控 dataDirectory 目录并不断处理移动进来的文件,记住目前不支持嵌套目录。

streamingContext.textFileStream(dataDirectory)

注意事项:

1)文件需要有相同的数据格式;

2)文件进入 dataDirectory的方式需要通过移动或者重命名来实现;

3)一旦文件移动进目录,则不能再修改,即便修改了也不会读取新数据;

 

1.2 案例实操

(1)在HDFS上建好目录

[atguigu@hadoop102 spark]$ hadoop fs -mkdir /fileStream

(2)在/opt/module/data创建三个文件

[atguigu@hadoop102 data]$ touch a.tsv

[atguigu@hadoop102 data]$ touch b.tsv

[atguigu@hadoop102 data]$ touch c.tsv

 

添加如下数据:

Hello      atguigu

Hello      spark

(3)编写代码

package com.atguigu

 

import org.apache.spark.SparkConf

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.dstream.DStream

 

object FileStream {

 

  def main(args: Array[String]): Unit = {

 

    //1.初始化Spark配置信息

Val sparkConf = new SparkConf().setMaster("local[*]")

.setAppName("StreamWordCount")

 

    //2.初始化SparkStreamingContext

    val ssc = new StreamingContext(sparkConf, Seconds(5))

 

       //3.监控文件夹创建DStream

    val dirStream = ssc.textFileStream("hdfs://hadoop102:9000/fileStream")

 

    //4.将每一行数据做切分,形成一个个单词

    val wordStreams = dirStream.flatMap(_.split("\t"))

 

    //5.将单词映射成元组(word,1)

    val wordAndOneStreams = wordStreams.map((_, 1))

 

    //6.将相同的单词次数做统计

    val wordAndCountStreams] = wordAndOneStreams.reduceByKey(_ + _)

 

    //7.打印

    wordAndCountStreams.print()

 

    //8.启动SparkStreamingContext

    ssc.start()

    ssc.awaitTermination()

  }

}

(4)启动程序并向fileStream目录上传文件

[atguigu@hadoop102 data]$ hadoop fs -put ./a.tsv /fileStream

[atguigu@hadoop102 data]$ hadoop fs -put ./b.tsv /fileStream

[atguigu@hadoop102 data]$ hadoop fs -put ./c.tsv /fileStream

(5)获取计算结果

-------------------------------------------

Time: 1539073810000 ms

-------------------------------------------

 

-------------------------------------------

Time: 1539073815000 ms

-------------------------------------------

(Hello,4)

(spark,2)

(atguigu,2)

 

-------------------------------------------

Time: 1539073820000 ms

-------------------------------------------

(Hello,2)

(spark,1)

(atguigu,1)

 

-------------------------------------------

Time: 1539073825000 ms

-------------------------------------------

 

2 RDD队列(了解)

2.1 用法及说明

测试过程中,可以通过使用ssc.queueStream(queueOfRDDs)来创建DStream,每一个推送到这个队列中的RDD,都会作为一个DStream处理。

 

2.2 案例实操

1)需求:循环创建几个RDD,将RDD放入队列。通过SparkStream创建Dstream,计算WordCount

2)编写代码

package com.atguigu

 

import org.apache.spark.SparkConf

import org.apache.spark.rdd.RDD

import org.apache.spark.streaming.dstream.{DStream, InputDStream}

import org.apache.spark.streaming.{Seconds, StreamingContext}

 

import scala.collection.mutable

 

object RDDStream {

 

  def main(args: Array[String]) {

 

    //1.初始化Spark配置信息

    val conf = new SparkConf().setMaster("local[*]").setAppName("RDDStream")

 

    //2.初始化SparkStreamingContext

    val ssc = new StreamingContext(conf, Seconds(4))

 

    //3.创建RDD队列

    val rddQueue = new mutable.Queue[RDD[Int]]()

 

    //4.创建QueueInputDStream

    val inputStream = ssc.queueStream(rddQueue,oneAtATime = false)

 

    //5.处理队列中的RDD数据

    val mappedStream = inputStream.map((_,1))

    val reducedStream = mappedStream.reduceByKey(_ + _)

 

    //6.打印结果

    reducedStream.print()

 

    //7.启动任务

    ssc.start()

 

//8.循环创建并向RDD队列中放入RDD

    for (i <- 1 to 5) {

      rddQueue += ssc.sparkContext.makeRDD(1 to 300, 10)

      Thread.sleep(2000)

    }

 

    ssc.awaitTermination()

  }

}

3)结果展示

-------------------------------------------

Time: 1539075280000 ms

-------------------------------------------

(4,60)

(0,60)

(6,60)

(8,60)

(2,60)

(1,60)

(3,60)

(7,60)

(9,60)

(5,60)

 

-------------------------------------------

Time: 1539075284000 ms

-------------------------------------------

(4,60)

(0,60)

(6,60)

(8,60)

(2,60)

(1,60)

(3,60)

(7,60)

(9,60)

(5,60)

 

-------------------------------------------

Time: 1539075288000 ms

-------------------------------------------

(4,30)

(0,30)

(6,30)

(8,30)

(2,30)

(1,30)

(3,30)

(7,30)

(9,30)

(5,30)

 

-------------------------------------------

Time: 1539075292000 ms

-------------------------------------------

 

3 自定义数据源

3.1 用法及说明

需要继承Receiver,并实现onStart、onStop方法来自定义数据源采集。

 

3.2 案例实操

1)需求:自定义数据源,实现监控某个端口号,获取该端口号内容。

2)代码实现

package com.atguigu

 

import java.io.{BufferedReader, InputStreamReader}

import java.net.Socket

import java.nio.charset.StandardCharsets

 

import org.apache.spark.storage.StorageLevel

import org.apache.spark.streaming.receiver.Receiver

 

class CustomerReceiver(host: String, port: Int) extends Receiver[String](StorageLevel.MEMORY_ONLY) {

 

  //最初启动的时候,调用该方法,作用为:读数据并将数据发送给Spark

  override def onStart(): Unit = {

    new Thread("Socket Receiver") {

      override def run() {

        receive()

      }

    }.start()

  }

 

  //读数据并将数据发送给Spark

  def receive(): Unit = {

 

    //创建一个Socket

    var socket: Socket = new Socket(host, port)

 

    //定义一个变量,用来接收端口传过来的数据

    var input: String = null

 

    //创建一个BufferedReader用于读取端口传来的数据

    val reader = new BufferedReader(new InputStreamReader(socket.getInputStream, StandardCharsets.UTF_8))

 

    //读取数据

    input = reader.readLine()

 

    //当receiver没有关闭并且输入数据不为空,则循环发送数据给Spark

    while (!isStopped() && input != null) {

      store(input)

      input = reader.readLine()

    }

 

    //跳出循环则关闭资源

    reader.close()

    socket.close()

 

    //重启任务

    restart("restart")

  }

 

  override def onStop(): Unit = {}

}

3)使用自定义的数据源采集数据

package com.atguigu

 

import org.apache.spark.SparkConf

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.dstream.DStream

 

object FileStream {

 

  def main(args: Array[String]): Unit = {

 

    //1.初始化Spark配置信息

Val sparkConf = new SparkConf().setMaster("local[*]")

.setAppName("StreamWordCount")

 

    //2.初始化SparkStreamingContext

    val ssc = new StreamingContext(sparkConf, Seconds(5))

 

//3.创建自定义receiver的Streaming

val lineStream = ssc.receiverStream(new CustomerReceiver("hadoop102", 9999))

 

    //4.将每一行数据做切分,形成一个个单词

    val wordStreams = lineStream.flatMap(_.split("\t"))

 

    //5.将单词映射成元组(word,1)

    val wordAndOneStreams = wordStreams.map((_, 1))

 

    //6.将相同的单词次数做统计

    val wordAndCountStreams] = wordAndOneStreams.reduceByKey(_ + _)

 

    //7.打印

    wordAndCountStreams.print()

 

    //8.启动SparkStreamingContext

    ssc.start()

    ssc.awaitTermination()

  }

}

 

4 Kafka数据源(重点)

4.1 用法及说明

在工程中需要引入 Maven 工件 spark- streaming-kafka_2.10 来使用它。包内提供的 KafkaUtils 对象可以在 StreamingContext 和 JavaStreamingContext 中以你的 Kafka 消息创建出 DStream。由于 KafkaUtils 可以订阅多个主题,因此它创建出的 DStream 由成对的主题和消息组成。要创建出一个流数据,需要使用 StreamingContext 实例、一个由逗号隔开的 ZooKeeper 主机列表字符串、消费者组的名字(唯一名字),以及一个从主题到针对这个主题的接收器线程数的映射表来调用 createStream() 方法。

 

4.2 案例实操

需求:通过SparkStreaming从Kafka读取数据,并将读取过来的数据做简单计算(WordCount),最终打印到控制台。

(1)导入依赖


    org.apache.spark
    spark-streaming-kafka-0-8_2.11
    2.1.1


    org.apache.kafka
    kafka-clients
    0.11.0.2

(2)编写代码

package com.atguigu

 

import kafka.serializer.StringDecoder

import org.apache.kafka.clients.consumer.ConsumerConfig

import org.apache.spark.SparkConf

import org.apache.spark.rdd.RDD

import org.apache.spark.storage.StorageLevel

import org.apache.spark.streaming.dstream.ReceiverInputDStream

import org.apache.spark.streaming.kafka.KafkaUtils

import org.apache.spark.streaming.{Seconds, StreamingContext}

 

object KafkaSparkStreaming {

 

  def main(args: Array[String]): Unit = {

 

    //1.创建SparkConf并初始化SSC

    val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("KafkaSparkStreaming")

    val ssc = new StreamingContext(sparkConf, Seconds(5))

 

    //2.定义kafka参数

    val brokers = "hadoop102:9092,hadoop103:9092,hadoop104:9092"

    val topic = "source"

    val consumerGroup = "spark"

 

    //3.将kafka参数映射为map

    val kafkaParam: Map[String, String] = Map[String, String](

      ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer",

      ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer",

      ConsumerConfig.GROUP_ID_CONFIG -> consumerGroup,

      ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> brokers

    )

 

    //4.通过KafkaUtil创建kafkaDSteam

    val kafkaDSteam: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](

      ssc,

      kafkaParam,

      Set(topic),

      StorageLevel.MEMORY_ONLY

    )

 

    //5.对kafkaDSteam做计算(WordCount)

    kafkaDSteam.foreachRDD {

      rdd => {

        val word: RDD[String] = rdd.flatMap(_._2.split(" "))

        val wordAndOne: RDD[(String, Int)] = word.map((_, 1))

        val wordAndCount: RDD[(String, Int)] = wordAndOne.reduceByKey(_ + _)

        wordAndCount.collect().foreach(println)

      }

    }

 

    //6.启动SparkStreaming

    ssc.start()

    ssc.awaitTermination()

  }

}

你可能感兴趣的:(Spark)