图的应用-拓扑排序及关键路径求解

1. 拓扑排序

1.1 拓扑排序简介

有⼀个表示⼯程的有向图中, ⽤顶点表示活动, 用弧表示活动之间的优先关系,这样有向图为顶点表示活动的⽹,我们称为AOV网(Activity On Vertex Network).
如下图1.1.1所示:
拓扑示意图.png
图中活动的有限集为:
C1~C2~C3~C4~C5
或者为:
C2~C1~C3~C4~C5

设G=(V,E)是一个具有n个顶点的有向图, V中的顶点序V1,V2,.....,Vn。若满足从顶点Vi到Vj有一条路径,则在顶点序列中Vi必须在Vj之前,则我们称这样的顶点序列为一个拓扑序列。

所谓拓扑排序,其实就是对一个有向图构造拓扑序列的过程。
构造过程拓扑序列会产生2个结果:
①. 如果此网中的全部顶点都被输出,则说明它是不存在环(回路)的AOV网。
②. 如果输出的顶点数少了,哪怕仅少了一个,也说明这个网存在环(回路路),不是AOV⽹。

1.2 拓扑排序算法

拓扑排序算法示意图1.2.1.png
对AOV网进行拓扑排序的基本思路是:从AOV网中选择一个入度为0的定点输出,然后删去此顶点,并删除以此顶点为尾的弧,继续重复此步骤,直到输出全部顶点后AOV网中不存在入度为0的顶点位置。

在拓扑排序中过程中,需要删除顶点,所以用邻接表会更加方便,因此我们需要为AOV网建立一个邻接表,并在顶点表结点中加入一个入度域in,结点如下图所示:
拓扑排序算法结点1.2.2.png

对于上图1.2.1的AOV网,我们得到下面的邻接表:
拓扑邻接表图1.2.3.png

拓扑算法基础代码如下:

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 14

/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Status;

/*邻接矩阵结构 */
typedef struct
{
    int vexs[MAXVEX];
    int arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges;
}MGraph;


/* 邻接表结构****************** */
//边表结点
typedef struct EdgeNode
{
    //邻接点域,存储该顶点对应的下标
    int adjvex;
    //用于存储权值,对于非网图可以不需要
    int weight;
    //链域,指向下一个邻接点
    struct EdgeNode *next;
}EdgeNode;

//顶点表结点
typedef struct VertexNode
{
    //顶点入度
    int in;
    //顶点域,存储顶点信息
    int data;
    //边表头指针
    EdgeNode *firstedge;
}VertexNode, AdjList[MAXVEX];

//图结构
typedef struct
{
    AdjList adjList;
    //图中当前顶点数和边数
    int numVertexes,numEdges;
}graphAdjList,*GraphAdjList;

在这个算法实现过程中,我们需要借助一个数据结构——,来帮助我们解决避免每次查找时, 都要去遍历AOV图中的顶点表去查找有没有入度为0的顶点。
①. 创建一个栈(stack),⽤来存储入度in为0的顶点序号;
②. 遍历AOV图中顶点表,判断入度为0的顶点全部入栈;

下面我们按照图1.2.1构建一个邻接表,为了省事,我们直接通过代码生成。
①. 首先我们通过代码构建一个AOV网图:

/*1.构成AOV网图*/
void CreateMGraph(MGraph *G)/* 构件图 */
{
    int i, j;
    /* printf("请输入边数和顶点数:"); */
    G->numEdges=MAXEDGE;
    G->numVertexes=MAXVEX;
    /* 初始化图 */
    for (i = 0; i < G->numVertexes; i++)
    {
        G->vexs[i]=i;
    }
    /* 初始化图 */
    for (i = 0; i < G->numVertexes; i++)
    {
        for ( j = 0; j < G->numVertexes; j++)
        {
            G->arc[i][j]=0;
        }
    }
    G->arc[0][4]=1;
    G->arc[0][5]=1;
    G->arc[0][11]=1;
    G->arc[1][2]=1;
    G->arc[1][4]=1;
    G->arc[1][8]=1;
    G->arc[2][5]=1;
    G->arc[2][6]=1;
    G->arc[2][9]=1;
    G->arc[3][2]=1;
    G->arc[3][13]=1;
    G->arc[4][7]=1;
    G->arc[5][8]=1;
    G->arc[5][12]=1;
    G->arc[6][5]=1;
    G->arc[8][7]=1;
    G->arc[9][10]=1;
    G->arc[9][11]=1;
    G->arc[10][13]=1;
    G->arc[12][9]=1;
}

②. 将AOV网图借助邻近矩阵转换成邻接表结构:

/*2.将AOV网图借助邻近矩阵转换成邻接表结构*/
void CreateALGraph(MGraph G,GraphAdjList *GL)
{
    int i,j;
    EdgeNode *e;
    
    //创建图
    *GL = (GraphAdjList)malloc(sizeof(graphAdjList));
    //对图中的顶点数.弧数赋值
    (*GL)->numVertexes=G.numVertexes;
    (*GL)->numEdges=G.numEdges;
    
    //读入顶点信息,建立顶点表
    for(i= 0;i adjList[i].in=0;
        (*GL)->adjList[i].data=G.vexs[i];
        //将边表置为空表
        (*GL)->adjList[i].firstedge=NULL;
    }
    
    //建立边表
    for(i=0;iadjvex=j;
                // 将当前顶点上的指向的结点指针赋值给e
                e->next=(*GL)->adjList[i].firstedge;
                //将当前顶点的指针指向e
                (*GL)->adjList[i].firstedge=e;
                (*GL)->adjList[j].in++;
                
            }
        }
    }
}

有了上面的邻接表数据后,我们进行拓扑排序,具体如下:

/*拓扑排序. 若AOV网图无回路则输出拓扑排序的序列并且返回状态值1,若存在回路则返回状态值0*/
/*拓扑排序:解决的是一个工程能否顺序进行的问题!*/
Status TopologicalSort(GraphAdjList GL){
    EdgeNode *e;
    int i,k,gettop;
    //用于栈指针下标
    int top=0;
    //用于统计输出顶点的个数
    int count=0;
    //建栈将入度为0的顶点入栈(目的:为了避免每次查找时都要遍历顶点表查找有没有入度为0的顶点)
    int *stack=(int *)malloc(GL->numVertexes * sizeof(int) );
    //1.遍历邻接表-顶点表,将入度in为0的顶点入栈
    /*参考图1> 此时stack栈中应该成为0,1,3.即V0,V1,V3的顶点入度为0*/
    for(i = 0; inumVertexes; i++)
        //将入度为0的顶点入栈
        if(0 == GL->adjList[i].in)
            stack[++top]=i;
    printf("top = %d\n",top);
    
    //2.循环栈结构(当栈中有元素则循环继续)
    while(top!=0)
    {
        //出栈
        gettop=stack[top--];
        printf("%d -> ",GL->adjList[gettop].data);
        
        //输出顶点,并计数
        count++;
        
        //遍历与栈顶相连接的弧
        for(e = GL->adjList[gettop].firstedge; e; e = e->next)
        {
            //获取与gettop连接的顶点
            k=e->adjvex;
            
            //1.将与gettop连接的顶点入度减1;
            //2.判断如果当前减1后为0,则入栈
            if( !(--GL->adjList[k].in) )
                //将k入栈到stack中,并且top加1;
                stack[++top]=k;
        }
    }
    printf("\n");
    
    //判断是否把所有的顶点都输出. 则表示找到了拓扑排序;
    if(count < GL->numVertexes)
        return ERROR;
    else
        return OK;
}

分析算法:将入度为0的顶点入栈的时间复杂度为O(n), 而之后的while 循环,每个顶点进一次栈,并且出一次栈。入度减1, 则共执行了e次. 那么整个算法的时间复杂度为O(n+e)。

测试代码如下:

int main(int argc, const char * argv[]) {
    // insert code here...
    printf("Hello, 拓扑排序!\n");
    MGraph G;
    GraphAdjList GL;
    int result;
    CreateMGraph(&G);
    CreateALGraph(G,&GL);
    result=TopologicalSort(GL);
    printf("result:%d\n",result);
    return 0;
}

上面的代码输出结果为:3 -> 1 -> 2 -> 6 -> 0 -> 4 -> 5 -> 8 -> 7 -> 12 -> 9 -> 10 ->13 -> 11
这并不是唯一的拓扑排序结果.

2. 关键路径

2.1 关键路径概述

在⼀个表示工程的带权的有向图中,用顶点表示事件,用有向边表示活动,用边上的权值表示活动的持续时间,这种有向图的边表表示活动的网,我们称之为AOE网(Activity On Edge Network)

没有入边的顶点称为始点或源点;
没有出边的顶点称为终点或汇点;
由于一个工程, 总有一个开始,一个结束。所以正常情况下,AOE⽹只有一个源点和一个汇点。

如下图2.1.1,就是一个AOE网,其中V0就是起点(源点),表示一个工程的开始,V9就是终点(汇点),表示一个工程的结束。顶点V0、V1......V9表示事件,弧......表示活动,权值a0=3、a1=4......a12=3表示活动持续的时间,图中表示从源点开始的第一个活动a0所需要的时间为3个时间单位。

关键路径AOE网示意图2.1.1.png

AOV网和AOE网都是用来对工程建模的,但是他们还是有很大的不同,主要体现在AOV网是顶点表示的活动的网,它只描述活动之间的制约关系,而AOE网使用边表示活动的网,边上的权值表示活动的持续时间。

例如,造一辆汽车。我们需要先造各种各样的零部件,最终才能完成汽⻋的组装。那么假如造一个轮⼦需要0.5天的时间, 造⼀个发动机需要3天时间,造一个车底盘需要2天时间,其他零部件需要3天时间,全部零部件集中到一处需要0.5天,组装成汽车需要2天时间。
那么这个工程的AOV网和AOE网分别为:
造车示意图2.1.2.png

相关名词:
路径上各个活动所持续的时间之和称为路径长度
从源点到汇点具有最大的路径叫关键路径
在关键路径上的活动叫关键活动

2.2 关键路径算法

在了解算法之前,我们先来了解一些参数概念:
① 事件的最早发生时间etv(elrliest time of vertex):即顶点Vk的最早发生时间。
② 事件的最晚发生时间ltv(latest tie of vertex):即顶点Vk的最晚发生时间,也就是每个顶点对应的事件最晚需要开始的时间,超过此时间将会延误整个工期。
③ 活动的最早开工时间ete(earliest time of edge):即弧ak的最早发生时间。
④ 活动的最晚开工时间lte(latest time of edge):即弧ak的最晚发生时间,也就是不推迟工期的最晚开工时间。

我们是由①和②求得③和④,然后再根据ete[k]是否与lte[k]相等来判断ak是否是关键活动。

我们将图2.1.1用邻接表的方式进行存储,如下图:
关键路径邻接表2.2.1.png

2.2.1 事件最早发生时间etv计算

求事件的最早发生时间etv的过程,就是从头至尾找拓扑序列的过程,因此在求解关键路径之前,需要调用一次拓扑排序算法来计算etv和拓扑序列表,首先声明几个全局变量。

int *etv,*ltv; /* 事件最早发生时间和最迟发生时间数组,全局变量 */
int *stack2;   /* 用于存储拓扑序列的栈 */
int top2;       /* 用于stack2的指针*/

其中stack2用来存储拓扑序列,方便后面求解关键路径使用。

求解etv公式:
etv求解公式示意图2.2.2.png

求解etv和拓扑序列表代码如下:

//拓扑排序
Status TopologicalSort(GraphAdjList GL){
    //若GL无回路,则输出拓扑排序序列且返回状态OK, 否则返回状态ERROR;
    EdgeNode *e;
    int i,k,gettop;
    //栈指针下标;
    int top = 0;
    //用于统计输出的顶点个数.作为拓扑排序是否存在回路的判断依据;
    int count = 0;
    //建栈,将入度in = 0的顶点入栈;
    int *stack = (int *)malloc(GL->numVertexes * sizeof(int));

    //遍历顶点表上入度in = 0 入栈
    for (i = 0; i < GL->numVertexes;i++) {
        //printf("%d %d\n",i,GL->adjList[i].in);
        if ( 0 == GL->adjList[i].in ) {
            stack[++top] = i;
        }
    }

    //* stack2 的栈指针下标
    top2 = 0;
    //* 初始化拓扑序列栈
    stack2 = (int *)malloc(sizeof(int) * GL->numVertexes);
    //* 事件最早发生时间数组
    etv = (int *)malloc(sizeof(GL->numVertexes * sizeof(int)));
    //* 初始化etv 数组
    for (i = 0 ; i < GL->numVertexes; i++) {
        //初始化
        etv[i] = 0;
    }

    printf("TopologicSort:\t");
    while (top != 0) {
        gettop = stack[top--];
        printf("%d -> ", GL->adjList[gettop].data);
        count++;

        //将弹出的顶点序号压入拓扑排序的栈中;
        stack2[++top2] = gettop;
        
        //例如gettop为V0 ,那么与V0相连接的结点就有etv[1] = 3; etv[2] = 4;
        //例如gettop为V1 ,那么与V1连接的结点就有etv[4]= 3+6=9; etv[3] = 8;
        //例如gettop为V2 ,那么与V2连接的结点就有etv[5]= 4+7=11; etv[3] = 12;
        //例如gettop为V3 ,那么与V3连接的结点就有etv[4]= 12+3=15;
        for(e = GL->adjList[gettop].firstedge; e; e = e->next)
        {
            k = e->adjvex;
            //将i顶点连接的邻接顶点入度减1,如果入度减一后为0,则入栈
            if(!(--GL->adjList[k].in))
                stack[++top] = k;

            //求各顶点事件的最早发生的时间etv值
            //printf("etv[gettop]+e->weight = %d\n",etv[gettop]+e->weight);
            //printf("etv[%d] = %d\n",k,etv[k]);
            if ((etv[gettop] + e->weight) > etv[k]) {
                etv[k] = etv[gettop] + e->weight;
            }
        }
    }
    printf("\n");
    
    //打印etv(事件最早发生时间数组)
//    for (i = 0; i < GL->numVertexes; i++) {
//        printf("etv[%d] = %d\n",i,etv[i]);
//    }
//    printf("\n");
    
    if(count < GL->numVertexes)
        return ERROR;
    else
        return OK;
    return OK;
}

2.2.2 事件最晚发生时间ltv及关键路径计算

事件的最晚发生时间ltv(latest tie of vertex):即顶点Vk的最晚发生时间,也就是每个顶点对应的事件最晚需要开始的时间,超过此时间将会延误整个工期。

通过计算事件最早开始时间,我们得到以下数据:
图2.2.4.png

  • 首次出栈的gettop = 9,但由于V9 没有弧表, 则没有相关的ltv更新,即ltv[9] = 27.
  • 当gettop = 8, 由图可知,与V8连接的顶点有V9,弧长<8,9>为3,所以V8的最晚发生时间为ltv[9]减去弧长<8,9>,得到的值与ltv[8]的值比较,取二者较小的值,即ltv[8] = 24.
  • 当gettop = 7, 由图可知,与V7连接的顶点有V8,弧长<7,8>为5,所以V7的最晚发生时间为ltv[8]减去弧长<7,8>,得到的值与ltv[7]的值比较,取二者较小的值,即ltv[7] = 19.
  • 当gettop = 5, 由图可知,与V5连接的顶点有V7,弧长<5,7>为6,所以V5的最晚发生时间为ltv[7]减去弧长<5,7>,得到的值与ltv[5]的值比较,取二者较小的值,即ltv[5] = 13.
  • 当gettop = 6, 由图可知,与V6连接的顶点有V9,弧长<6,9>为2,所以V6的最晚发生时间为ltv[9]减去弧长<6,9>,得到的值与ltv[6]的值比较,取二者较小的值,即ltv[6] = 25.
  • 当gettop = 4, 由图可知,与V4连接的顶点有V6和V7,弧长分别为<4,6>为9、<4,7>为4,所以V4的最晚发生时间为ltv[6]减去弧长<4,6>的值与ltv[7]减去弧长<4,7>的值分别与ltv[4]的值比较,取较小值更新ltv[4],最终ltv[4] = 15.

依次类推,知道stack2栈全部元素出栈,结果如下图:
图2.2.5.png

关于ete以及lte计算:
ete表示活动 k,Vj> 的最早开工时间, 是针对这条弧来说的,而这条弧的弧尾顶点Vk 的事件发生了, 它才可以发生,因此ete = etv[k];

lte表示活动k,Vj>的最晚开工时间, 但此活动再晚也不能等Vj 事件发⽣才开始,而是必须在Vj 事件之前发⽣,所以lte = ltv[j] - lenk, Vj>。

最终计算代码如下:

//求关键路径, GL为有向网,则输出G的各项关键活动;
void CriticalPath(GraphAdjList GL){
    EdgeNode *e;
    int i,gettop,k,j;
    
    //声明活动最早发生时间和最迟发生时间变量;
    int ete,lte;
    
    //求得拓扑序列,计算etv数组以及stack2的值
    TopologicalSort(GL);
   
    //打印etv数组(事件最早发生时间)
    printf("etv:\n");
    for(i = 0; i < GL->numVertexes; i++)
        printf("etv[%d] = %d \n",i,etv[i]);
    printf("\n");
    
    //事件最晚发生时间数组
    ltv = (int *)malloc(sizeof(int) * GL->numVertexes);
   
    //初始化ltv数组
    for (i = 0; i < GL->numVertexes; i++) {
        //初始化ltv数组. 赋值etv最后一个事件的值
        ltv[i] = etv[GL->numVertexes-1];
        //printf("ltv[%d] = %d\n",i,ltv[i]);
    }
    
    //计算ltv(事件最晚发生时间) 出栈求ltv
    while (top2 != 0) {
        
        //出栈(栈顶元素)
        gettop = stack2[top2--];
        
        //找到与栈顶元素连接的顶点; 例如V0是与V1和V2连接
        for (e = GL->adjList[gettop].firstedge; e; e = e->next) {
            //获取与gettop 相连接的顶点
            k = e->adjvex;
            //计算min(ltv[k]-e->weight,ltv[gettop])
            if (ltv[k] - e->weight < ltv[gettop]) {
                //更新ltv 数组
                ltv[gettop] = ltv[k] - e->weight;
            }
        }
    }
    
    //打印ltv 数组
    printf("ltv:\n");
    for (i = 0 ; i < GL->numVertexes; i++) {
        printf("ltv[%d] = %d \n",i,ltv[i]);
    }
    
    printf("\n");
    //求解ete,lte 并且判断lte与ete 是否相等.相等则是关键活动;
    //2层循环(遍历顶点表,边表)
    for(j=0; jnumVertexes;j++)
    {
        for (e = GL->adjList[j].firstedge; e; e = e->next) {
            //获取与j连接的顶点;
            k = e->adjvex;
            //ete 就是表示活动  的最早开工时间, 是针对这条弧来说的.而这条弧的弧尾顶点Vk 的事件发生了, 它才可以发生. 因此ete = etv[k];
            ete = etv[j];
            //lte 表示活动 的最晚开工时间, 但此活动再晚也不能等Vj 事件发生才开始,而是必须在Vj 事件之前发生. 所以lte = ltv[j] - len.
            lte = ltv[k]-e->weight;
            //如果ete == lte 则输出j,k以及权值;
            if (ete == lte) {
                printf("<%d-%d> length:%d\n",GL->adjList[j].data, GL->adjList[k].data, e->weight);
            }
        }
    }
    
}

时间复杂度计算:
拓扑排序的时间复杂度:O(n+e);
初始化ltv时间复杂度:O(n);
计算ltv的时间复杂度:O(n+e);
计算ete/lte时间复杂度: O(n+e);
所以最终求得关键路径的时间复杂度为: O(n+e)

你可能感兴趣的:(数据结构,算法,c,拓扑图)