Flink的两种基本状态

Flink包含两种基本的状态 Keyed State 和 Operator State

Keyed State
Keyed State 通常和 key 相关,仅可使用在 KeyedStream 的方法和算子中。

你可以把 Keyed State 看作分区或者共享的 Operator State, 而且每个 key 仅出现在一个分区内。 逻辑上每个 keyed-state 和唯一元组 <算子并发实例, key> 绑定,由于每个 key 仅”属于” 算子的一个并发,因此简化为 <算子, key>。

Keyed State 会按照 Key Group 进行管理。Key Group 是 Flink 分发 Keyed State 的最小单元; Key Group 的数目等于作业的最大并发数。在执行过程中,每个 keyed operator 会对应到一个或多个 Key Group

Operator State
对于 Operator State (或者 non-keyed state) 来说,每个 operator state 和一个并发实例进行绑定。 Kafka Connector 是 Flink 中使用 operator state 的一个很好的示例。 每个 Kafka 消费者的并发在 Operator State 中维护一个 topic partition 到 offset 的映射关系。

Operator State 在 Flink 作业的并发改变后,会重新分发状态,分发的策略和 Keyed State 不一样。

Flink的状态的两种表现形式

Keyed State 和 Operator State 分别有两种存在形式:managed and raw.

Managed State 由 Flink 运行时控制的数据结构表示,比如内部的 hash table 或者 RocksDB。 比如 “ValueState”, “ListState” 等。Flink runtime 会对这些状态进行编码并写入 checkpoint。

Raw State 则保存在算子自己的数据结构中。checkpoint 的时候,Flink 并不知晓具体的内容,仅仅写入一串字节序列到 checkpoint。

所有 datastream 的 function 都可以使用 managed state, 但是 raw state 则只能在实现算子的时候使用。 由于 Flink 可以在修改并发时更好的分发状态数据,并且能够更好的管理内存,因此建议使用 managed state(而不是 raw state)。

Flink的两种基本状态_第1张图片

使用 Managed Keyed State

managed keyed state 接口提供不同类型状态的访问接口,这些状态都作用于当前输入数据的 key 下。换句话说,这些状态仅可在 KeyedStream 上使用,可以通过 stream.keyBy(...) 得到 KeyedStream.

请牢记,这些状态对象仅用于与状态交互。状态本身不一定存储在内存中,还可能在磁盘或其他位置。 另外需要牢记的是从状态中获取的值取决于输入元素所代表的 key。 因此,在不同 key 上调用同一个接口,可能得到不同的值。

你必须创建一个 StateDescriptor,才能得到对应的状态句柄。 这保存了状态名称(正如我们稍后将看到的,你可以创建多个状态,并且它们必须具有唯一的名称以便可以引用它们), 状态所持有值的类型,并且可能包含用户指定的函数,例如ReduceFunction。 根据不同的状态类型,可以创建ValueStateDescriptorListStateDescriptor, ReducingStateDescriptorFoldingStateDescriptor 或 MapStateDescriptor

下面是一个 FlatMapFunction 的例子,展示了如何将这些部分组合起来:

public class CountWindowAverage extends RichFlatMapFunction, Tuple2> {

    /**
     * The ValueState handle. The first field is the count, the second field a running sum.
     */
    private transient ValueState> sum;

    @Override
    public void flatMap(Tuple2 input, Collector> out) throws Exception {

        // access the state value
        Tuple2 currentSum = sum.value();

        // update the count
        currentSum.f0 += 1;

        // add the second field of the input value
        currentSum.f1 += input.f1;

        // update the state
        sum.update(currentSum);

        // if the count reaches 2, emit the average and clear the state
        if (currentSum.f0 >= 2) {
            out.collect(new Tuple2<>(input.f0, currentSum.f1 / currentSum.f0));
            sum.clear();
        }
    }

    @Override
    public void open(Configuration config) {
        ValueStateDescriptor> descriptor =
                new ValueStateDescriptor<>(
                        "average", // the state name
                        TypeInformation.of(new TypeHint>() {}), // type information
                        Tuple2.of(0L, 0L)); // default value of the state, if nothing was set
        sum = getRuntimeContext().getState(descriptor);
    }
}

// this can be used in a streaming program like this (assuming we have a StreamExecutionEnvironment env)
env.fromElements(Tuple2.of(1L, 3L), Tuple2.of(1L, 5L), Tuple2.of(1L, 7L), Tuple2.of(1L, 4L), Tuple2.of(1L, 2L))
        .keyBy(0)
        .flatMap(new CountWindowAverage())
        .print();

// the printed output will be (1,4) and (1,5)

这个例子实现了一个简单的计数窗口。 我们把元组的第一个元素当作 key(在示例中都 key 都是 “1”)。 该函数将出现的次数以及总和存储在 “ValueState” 中。 一旦出现次数达到 2,则将平均值发送到下游,并清除状态重新开始。 请注意,我们会为每个不同的 key(元组中第一个元素)保存一个单独的值。

使用 Managed Operator State

用户可以通过实现 CheckpointedFunction 或 ListCheckpointed 接口来使用 managed operator state。

CheckpointedFunction

CheckpointedFunction 接口提供了访问 non-keyed state 的方法,需要实现如下两个方法:

void snapshotState(FunctionSnapshotContext context) throws Exception;

void initializeState(FunctionInitializationContext context) throws Exception;

进行 checkpoint 时会调用 snapshotState()。 用户自定义函数初始化时会调用 initializeState(),初始化包括第一次自定义函数初始化和从之前的 checkpoint 恢复。 因此 initializeState() 不仅是定义不同状态类型初始化的地方,也需要包括状态恢复的逻辑。

当前,managed operator state 以 list 的形式存在。这些状态是一个 可序列化 对象的集合 List,彼此独立,方便在改变并发后进行状态的重新分派。 换句话说,这些对象是重新分配 non-keyed state 的最细粒度。根据状态的不同访问方式,有如下几种重新分配的模式:

  • Even-split redistribution: 每个算子都保存一个列表形式的状态集合,整个状态由所有的列表拼接而成。当作业恢复或重新分配的时候,整个状态会按照算子的并发度进行均匀分配。 比如说,算子 A 的并发读为 1,包含两个元素 element1 和 element2,当并发读增加为 2 时,element1 会被分到并发 0 上,element2 则会被分到并发 1 上。

  • Union redistribution: 每个算子保存一个列表形式的状态集合。整个状态由所有的列表拼接而成。当作业恢复或重新分配时,每个算子都将获得所有的状态数据。

下面的例子中的 SinkFunction 在 CheckpointedFunction 中进行数据缓存,然后统一发送到下游,这个例子演示了列表状态数据的 event-split redistribution。

public class BufferingSink
        implements SinkFunction>,
                   CheckpointedFunction {

    private final int threshold;

    private transient ListState> checkpointedState;

    private List> bufferedElements;

    public BufferingSink(int threshold) {
        this.threshold = threshold;
        this.bufferedElements = new ArrayList<>();
    }

    @Override
    public void invoke(Tuple2 value, Context contex) throws Exception {
        bufferedElements.add(value);
        if (bufferedElements.size() == threshold) {
            for (Tuple2 element: bufferedElements) {
                // send it to the sink
            }
            bufferedElements.clear();
        }
    }

    @Override
    public void snapshotState(FunctionSnapshotContext context) throws Exception {
        checkpointedState.clear();
        for (Tuple2 element : bufferedElements) {
            checkpointedState.add(element);
        }
    }

    @Override
    public void initializeState(FunctionInitializationContext context) throws Exception {
        ListStateDescriptor> descriptor =
            new ListStateDescriptor<>(
                "buffered-elements",
                TypeInformation.of(new TypeHint>() {}));

        checkpointedState = context.getOperatorStateStore().getListState(descriptor);

        if (context.isRestored()) {
            for (Tuple2 element : checkpointedState.get()) {
                bufferedElements.add(element);
            }
        }
    }
}

initializeState 方法接收一个 FunctionInitializationContext 参数,会用来初始化 non-keyed state 的 “容器”。这些容器是一个 ListState 用于在 checkpoint 时保存 non-keyed state 对象。

注意这些状态是如何初始化的,和 keyed state 类系,StateDescriptor 会包括状态名字、以及状态类型相关信息。

ListStateDescriptor> descriptor =
    new ListStateDescriptor<>(
        "buffered-elements",
        TypeInformation.of(new TypeHint>() {}));

checkpointedState = context.getOperatorStateStore().getListState(descriptor);

调用不同的获取状态对象的接口,会使用不同的状态分配算法。比如 getUnionListState(descriptor) 会使用 union redistribution 算法, 而 getListState(descriptor) 则简单的使用 even-split redistribution 算法。

当初始化好状态对象后,我们通过 isRestored() 方法判断是否从之前的故障中恢复回来,如果该方法返回 true 则表示从故障中进行恢复,会执行接下来的恢复逻辑。

正如代码所示,BufferingSink 中初始化时,恢复回来的 ListState 的所有元素会添加到一个局部变量中,供下次 snapshotState() 时使用。 然后清空 ListState,再把当前局部变量中的所有元素写入到 checkpoint 中。

另外,我们同样可以在 initializeState() 方法中使用 FunctionInitializationContext 初始化 keyed state

ListCheckpointed

ListCheckpointed 接口是 CheckpointedFunction 的精简版,仅支持 even-split redistributuion 的 list state。同样需要实现两个方法:

List snapshotState(long checkpointId, long timestamp) throws Exception;

void restoreState(List state) throws Exception;

snapshotState() 需要返回一个将写入到 checkpoint 的对象列表,restoreState 则需要处理恢复回来的对象列表。如果状态不可切分, 则可以在 snapshotState() 中返回 Collections.singletonList(MY_STATE)

 摘自flink官网:https://ci.apache.org/projects/flink/flink-docs-release-1.10/zh/dev/stream/state/state.html

你可能感兴趣的:(flink)