- 大数据如何助力企业文化“软实力”升级?深挖数据背后的文化密码
Echo_Wish
大数据高阶实战秘籍大数据
大数据如何助力企业文化“软实力”升级?深挖数据背后的文化密码今天我们聊一个听起来很“软”的话题——企业文化,但从一个不太“软”的角度来看:大数据如何参与企业文化的建设与提升。企业文化往往被看作无形资产,是团队凝聚力、创新力的源泉。但传统“喊口号”式的文化建设常常效果有限。大数据技术的兴起,给我们提供了洞察员工心理、量化文化影响的新思路,让文化建设从“感性”走向“理性”,从“盲目”变得“精准”。一、
- Docker快速部署Hive服务
长路 ㅤ
运维Docker配置Hive环境大数据远程调试
文章目录前言Docker快速配置hive环境资料获取前言博主介绍:✌目前全网粉丝4W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。涵盖技术内容:Java后端、大数据、算法、分布式微服务、中间件、前端、运维等。博主所有博客文件目录索引:博客目录索引(持续更新)CSDN搜索:长路视频平台:b站-Coder长路Docker快速配置hive环境Ap
- 从UI设计到数字孪生实战:构建智慧教育的个性化学习平台
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!一、引言:数字孪生重构智慧教育的技术范式在教育数字化转型加速推进的背景下,传统在线教育正面临"个性化不足、学习体验单一、效果评估滞后"的瓶颈。教育部数据显示,采用数字孪生技术的智慧教育平台,学生学习效率平均提升35
- 每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户_用户每日登陆脉脉会访问app不同的模块,现有两个表 表1记录了每日脉脉活跃用户的ui(1)
文章目录每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户每日语录第25题:1.需求列表1.初级题:每日活跃用户思路分析(1)创建表(2)思路答案获取加技术群讨论附表文末SQL小技巧后记每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户大家好,我是Maynor。相信大家和我一样,都有一个大厂梦,作为一名资深大数据选手,深知SQL重要性,接下来我准备用100天时间,基于大
- Spring Boot 项目启动时按需初始化加载数据
我叫晨曦啊
springbootspringbootjava后端
1、新建类,类上添加注解@Component,该类用于在项目启动时处理数据加载任务;2、该类实现ApplicationRunner接口,并重写run方法;3、在重写的run方法里处理数据加载任务;注意:有定时加载数据需求的话,添加定时任务即可;一次性加载大数据量时可能内存溢出;同一个项目中,可以定义多个ApplicationRunner的实现类;存在多个ApplicationRunner的实现类时
- 云原生--微服务、CICD、SaaS、PaaS、IaaS
青秋.
云原生docker云原生微服务kubernetesserverlessservice_meshci/cd
往期推荐浅学React和JSX-CSDN博客一文搞懂大数据流式计算引擎Flink【万字详解,史上最全】-CSDN博客一文入门大数据准流式计算引擎Spark【万字详解,全网最新】_大数据spark-CSDN博客目录1.云原生概念和特点2.常见云模式3.云对外提供服务的架构模式3.1IaaS(Infrastructure-as-a-Service)3.2PaaS(Platform-as-a-Servi
- Apache SeaTunnel × Hive 深度集成指南:原理、配置与实践
数据库
在大数据处理的复杂生态中,数据的高效流转与整合是实现数据价值的关键。ApacheSeaTunnel作为一款高性能、分布式、易扩展的数据集成框架,能够快速实现海量数据的实时采集、转换和加载;而ApacheHive作为经典的数据仓库工具,为结构化数据的存储、查询和分析提供了坚实的基础。将ApacheSeaTunnel与Hive进行集成,能够充分发挥两者的优势,构建起高效的数据处理链路,满足企业多样化的
- 大数据平台之ranger与ldap集成,同步用户和组
无级程序员
大数据大数据hadoop
ranger可以通过ranger-usersync与linux系统同步用户,但是,还有个问题,就是我们的hiveserver一般是集群,可以是多台服务器,那么我们空间同步哪一台呢,而且如果用户多了,如何管理用户登录密码呢,所以,还是要用ldap比较合理。首先是安装openldap:yum-yinstallopenldapcompat-openldapopenldap-clientsopenldap
- vue-scrollto实现页面组件锚点定位
长路 ㅤ
前端vue.js前端javascript
文章目录前言背景操作指南安装及配置步骤vue组件中使用参考文章前言博主介绍:✌目前全网粉丝3W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。涵盖技术内容:Java后端、大数据、算法、分布式微服务、中间件、前端、运维等。博主所有博客文件目录索引:博客目录索引(持续更新)视频平台:b站-Coder长路背景vue中在hash模式下,页面的动态渲染
- SQL Server 临时表、表变量与WITH语句的用法与区别
Favor_Yang
SQL调优及高级SQL语法编写数据库sqlsqlserver
引言在SQLServer数据处理中,临时表、表变量和WITH语句(CTE)是关键的中间结果集管理工具。临时表适合大数据量操作,表变量优化小数据量场景,而CTE则简化复杂查询逻辑。三者选择需综合考量数据量级、事务需求及代码可读性。本文将深入解析其工作机制,通过实测对比指导场景化选型。1.临时表(TemporaryTables)定义与创建通过#(本地)或##(全局)前缀创建物理表:--本地临时表CRE
- 从0到1:Vue.js与D3.js搭建AI大数据动态看板
一、引言在当今AI和大数据盛行的时代,数据如同企业的“石油”,蕴含着巨大的价值。随着数据量呈指数级增长,如何从海量数据中快速提取有价值的信息,并以直观、易懂的方式呈现出来,成为了数据分析领域的关键挑战。数据看板作为一种强大的数据可视化工具,能够将复杂的数据转化为直观的图表、图形和指标,帮助用户快速理解数据背后的含义,做出更明智的决策。无论是企业的管理层、业务分析师还是数据科学家,都可以通过数据看板
- Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
Edingbrugh.南空
大数据flinkflinkclickhouse大数据
引言在大数据处理领域,ApacheFlink是一款强大的流处理和批处理框架,而ClickHouse则是一个高性能的列式数据库,专为在线分析处理(OLAP)场景设计。FlinkClickHouse连接器为这两者之间搭建了一座桥梁,使得用户能够在Flink中方便地与ClickHouse数据库进行交互,实现数据的读写操作。本文将详细介绍FlinkClickHouse连接器的相关内容,包括其特点、使用方法
- 【前端开发】Uniapp分页器:新增输入框跳转功能
基于UniApp官方扩展组件库uni-ui中的uni-pagination分页器组件,针对大数据量场景进行优化主要优化以下内容:新增输入框跳转功能:在原有分页器基础上,新增了一个输入框区域,允许用户直接输入目标页码进行跳转双向页码绑定优化:实现了输入框与当前页码的双向绑定机制。当用户通过其他方式(如点击上一页、下一页、页码按钮)切换页面时,输入框会自动更新显示当前页码。同时,当用户在输入框中输入页
- 大数据技术之Flink
第1章Flink概述1.1Flink是什么1.2Flink特点1.3FlinkvsSparkStreaming表Flink和Streaming对比FlinkStreaming计算模型流计算微批处理时间语义事件时间、处理时间处理时间窗口多、灵活少、不灵活(窗口必须是批次的整数倍)状态有没有流式SQL有没有1.4Flink的应用场景1.5Flink分层API第2章Flink快速上手2.1创建项目在准备
- 如何在YashanDB中实现多级缓存策略
数据库
随着大数据时代的到来,数据存储和访问的效率要求越来越高。数据库技术在面对海量数据、高并发访问时,性能瓶颈逐渐凸显,尤其是响应时间和系统吞吐量成为开发者和DBA关注的重点。为了解决这些问题,缓存策略被引入作为一种有效的解决方案。然而,不同类型的缓存(如内存缓存、磁盘缓存等)之间需要协调工作,以达到最佳性能。在此背景下,YashanDB作为一个云原生数据库,支持多级缓存策略,为数据访问提供了灵活的加速
- 蛋白质结构预测/功能注释/交互识别/按需设计,中国海洋大学张树刚团队直击蛋白质智能计算核心任务
hyperai
蛋白质作为生命活动的主要承担者,在人体生理功能中扮演关键角色。然而传统研究面临结构解析成本高昂、功能注释严重滞后、新型蛋白质设计效率低下等挑战。近年来,生命科学对蛋白质复杂特性解析的需求日益迫切,大数据、深度学习、多模态计算等技术的突破性发展,为构建蛋白质智能计算体系提供了全新的发展契机。蛋白质智能计算体系的构建,使得蛋白质在大规模功能注释、交互预测及三维结构建模等领域取得显著成果,为药物发现与生
- 管理大数据存储的十大技巧
weixin_34238633
大数据数据库运维
在1990年,每一台应用服务器都倾向拥有直连式系统(DAS)。SAN的构建则是为了更大的规模和更高的效率提供共享的池存储。Hadoop已经逆转了这一趋势回归DAS。每一个Hadoop集群都拥有自身的——虽然是横向扩展型——直连式存储,这有助于Hadoop管理数据本地化,但也放弃了共享存储的规模和效率。如果你拥有多个实例或Hadoop发行版,那么你就将得到多个横向扩展的存储集群。而我们所遇到的最大挑
- 【计算机毕业设计】基于Springboot的办公用品管理系统+LW
枫叶学长(专业接毕设)
Java毕业设计实战案例课程设计springboot后端
博主介绍:✌全网粉丝3W+,csdn特邀作者、CSDN新星计划导师、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。主要内容:
- 深入解析Spring Boot与Kafka集成:构建高性能消息驱动应用
Uranus^
JavaSpringBootKafka消息队列分布式系统
深入解析SpringBoot与Kafka集成:构建高性能消息驱动应用引言在现代分布式系统中,消息队列是实现异步通信和解耦的关键组件之一。ApacheKafka作为一种高性能、分布式的消息队列系统,被广泛应用于大数据处理、实时流处理以及事件驱动的架构中。本文将深入探讨如何在SpringBoot应用中集成Kafka,构建高性能的消息驱动应用。Kafka简介ApacheKafka是一个分布式流处理平台,
- 掌握大数据领域数据湖的部署要点
掌握大数据领域数据湖的部署要点关键词:数据湖,大数据部署,数据治理,存储架构,元数据管理,数据质量,湖仓一体摘要:在数据爆炸的时代,企业面临着"数据多却用不好"的困境——结构化数据藏在数据库里,非结构化数据堆在服务器上,半结构化数据散落在日志文件中。数据湖就像一个"智能中央仓库",能统一存储所有类型的数据,并通过灵活的管理让数据"活起来"。本文将用"图书馆管理员建仓库"的故事,从概念理解、架构设计
- (阳:算法霸权 / 阴:数据确权)→当GDPR类法规覆盖53%经济体量时,催生出隐私计算新范式
百态老人
人工智能机器学习深度学习算法
当GDPR类法规覆盖53%经济体量时,隐私计算新范式的兴起可归因于以下多维度因素的相互作用:一、算法霸权与数据确权的矛盾激化算法霸权的危害大型科技公司通过算法歧视、大数据杀熟等手段形成垄断优势,利用数据优势操控用户行为,导致消费者权益受损。这种"算法黑箱"不仅加剧市场不公平,还阻碍数据要素的自由流动。例如,算法框架的底层逻辑掌握在少数企业手中,产生"数据黑箱"问题。数据确权的立法需求数据权属不明确
- 解析大数据领域结构化数据的管理模式
大数据洞察
大数据ai
解码结构化数据:大数据时代的高效管理模式与实践指南关键词结构化数据、大数据管理、数据建模、分布式数据库、数据仓库、数据治理、性能优化摘要在大数据的洪流中,结构化数据犹如隐藏在波涛之下的磐石,虽然不如非结构化数据那般引人注目,却是企业决策的基石。本文深入剖析了大数据环境下结构化数据的管理模式,从传统关系型数据库到现代分布式系统,从数据建模到存储架构,全面解读了结构化数据管理的核心技术与实践方法。通过
- ClickHouse【理论篇】01:什么是ClickHouse
ClickHouse是一款开源的列式数据库管理系统(Column-OrientedDBMS),专为高性能实时数据分析(OLAP,OnlineAnalyticalProcessing)场景设计。它由俄罗斯搜索引擎公司Yandex开发(2016年开源),目前由独立基金会ClickHouse,Inc.维护,广泛应用于大数据分析、日志处理、用户行为洞察等领域。一、核心定位:OLAP场景的“性能标杆”传统关
- 【大数据入门核心技术-DolphinScheduler】(二)DolphinScheduler安装部署-集群模式
forest_long
大数据技术入门到21天通关大数据sparkhivehadoop交互flinkmapreduce
目录一、部署模式1、单机模式2、伪集群模式3、集群模式二、部署安装1、下载2、创建mysql元数据库3、配置一键部署脚本4、初始化数据库5、一键部署DolphinScheduler6、访问DolphinSchedulerUI三、启停命令一、部署模式DolphinScheduler支持多种部署模式,包括单机模式(Standalone)、伪集群模式(PseudoCluster)、集群模式(Cluste
- 利用已有的 PostgreSQL 和 ZooKeeper 服务,启动dolphinscheduler-standalone-server3.1.9 镜像
云游
大数据平台zookeeperdockerpostgresql工作流任务调度
ApacheDolphinScheduler是一个分布式易扩展的可视化DAG工作流任务调度开源系统。适用于企业级场景,提供了一个可视化操作任务、工作流和全生命周期数据处理过程的解决方案。ApacheDolphinScheduler旨在解决复杂的大数据任务依赖关系,并为应用程序提供数据和各种OPS编排中的关系。解决数据研发ETL依赖错综复杂,无法监控任务健康状态的问题。DolphinSchedule
- Alpha系统联结大数据、GPT两大功能,助力律所管理降本增效
资讯分享周
大数据gpt
如何通过AI工具实现法律服务的提质增效,是每一位法律人都积极关注和学习的课题。但从AI技术火爆一下,法律人一直缺乏系统、实用的学习资料,来掌握在法律场景下AI的使用技巧。今年5月,iCourt携手贵阳律协大数据与人工智能专业委员会,联合举办了《人工智能助力律师行业高质量发展巡回讲座》,超过100家律所的律师参与活动。讲座上,iCourtAIGC研究员、AlphaGPT产品研发负责人兰洋,为贵州律协
- 电商API性能优化:策略体系与实施要点
Joe13265449558
性能优化电商返回值淘宝API接口京东
电商API性能优化策略介绍在电商领域,API(应用程序编程接口)作为连接电商平台与外部系统、服务或应用的关键桥梁,其性能直接关系到用户体验、业务效率以及系统的整体稳定性。随着电商业务的快速发展,API接口面临着高并发、大数据量处理等挑战,因此,对电商API进行性能优化显得尤为重要。本文将从多个维度探讨电商API性能优化的策略。一、数据库优化策略数据库是电商API接口的核心组件之一,其性能直接影响A
- ECharts 智慧医疗大屏制作实例详解
在大数据时代,数据可视化已成为信息传递和决策支持的重要手段。ECharts作为一款功能强大、易于上手的开源可视化库,凭借其丰富的图表类型、灵活的配置项和良好的跨平台兼容性,广泛应用于企业级数据大屏、BI报表、实时监控等场景。本教程以“智慧医疗大屏”为例,完整演示了从页面搭建、图表配置到动态交互与响应式适配的全过程。通过循序渐进的讲解,读者将掌握如何使用ECharts构建专业、美观、可交互的数据可视
- 大数据 ETL 工具 Sqoop 深度解析与实战指南
一、Sqoop核心理论与应用场景1.1设计思想与技术定位Sqoop是Apache旗下的开源数据传输工具,核心设计基于MapReduce分布式计算框架,通过并行化的Map任务实现高效的数据批量迁移。其特点包括:批处理特性:基于MapReduce作业实现导入/导出,适合大规模离线数据迁移,不支持实时数据同步。异构数据源连接:支持关系型数据库(如MySQL、Oracle)与Hadoop生态(HDFS、H
- Python(28)Python循环语句指南:从语法糖到CPython字节码的底层探秘
一个天蝎座白勺程序猿
Python爬虫入门到高阶实战python开发语言
目录引言一、推导式家族全解析1.1基础语法对比1.2性能对比测试二、CPython实现揭秘2.1字节码层面的秘密2.2临时变量机制三、高级特性实现3.1嵌套推导式优化3.2条件表达式处理四、性能优化指南4.1内存使用对比4.2执行时间优化技巧五、最佳实践建议六、总结Python爬虫相关文章(推荐)引言在Python编程中,循环语句是控制流程的核心工具。传统for循环虽然直观,但在处理大数据时往往面
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo