flink实战(一) flink-sql关联hbase维度数据处理

概述

最近项目中用到flink进行实时计算,流程为从kafka读取数据,如果是维度数据,则插入到hbase中,如果是需要实时计算的数据,
则进行实时计算,并将计算结果保存到MySQL中。在实时计算过程中,可能会用到hbase中的维度数据,为了开发的效率,使用flink-sql的方式实现。
flink-sql是在flink流式计算的基础上进行了高度抽象,使开发过程更简单,更有效率,但要理解sql执行背后的原理还是需要
仔细学习flink流式计算的相关内容。本文主要以flink-sql实现相关功能。

假设需求如下:

  1. 用户数据,需要从kafka中读取,并保存到hbase中,作为维度数据。
  2. 商品数据,需要从kafka中读取,并保存到hbase中,作为维度数据。
  3. 订单数据,需要从kafka中读取,并进行实时计算,最后将计算结果保存到MySQL中(表示支付成功后的订单数据)。

假设需要统计用户每天的订单数量

用户数据:userID, userName, sex, address (用户ID,用户名,性别,地址)

商品数据:productID, productName, productType (商品ID,商品名称,商品类型)

订单数据:orderID, userID, productID, productCount, money, buyDate (订单ID,用户ID,商品ID,商品数量,商品单价,购买日期)

最终计算结果:userName, productType, productName, buyDate, productCount, totalMoney (用户名,商品类型,商品名称,购买日期,商品数量,商品总价)
即:要求计算某人在某日购买了某种类别,某种商品名称的商品数量,花费了多少钱

maven依赖

<dependencies>
        <dependency>
            <groupId>org.slf4jgroupId>
            <artifactId>slf4j-apiartifactId>
            <version>1.7.7version>
        dependency>
        <dependency>
            <groupId>redis.clientsgroupId>
            <artifactId>jedisartifactId>
            <version>2.9.0version>
        dependency>
        <dependency>
            <groupId>log4jgroupId>
            <artifactId>log4jartifactId>
            <version>1.2.17version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-clients_2.11artifactId>
            <version>1.10.0version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-javaartifactId>
            <version>1.10.0version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-streaming-java_2.11artifactId>
            <version>1.10.0version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-connector-kafka-0.10_2.11artifactId>
            <version>1.10.0version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-commonartifactId>
            <version>1.10.0version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-streaming-scala_2.11artifactId>
            <version>1.10.0version>
        dependency>
        <dependency>
            <groupId>com.alibabagroupId>
            <artifactId>fastjsonartifactId>
            <version>1.2.58version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-hbase_2.11artifactId>
            <version>1.10.0version>
            <exclusions>
                <exclusion>
                    <groupId>org.apache.hbasegroupId>
                    <artifactId>hbase-clientartifactId>
                exclusion>
                <exclusion>
                    <groupId>org.apache.hbasegroupId>
                    <artifactId>hbase-serverartifactId>
                exclusion>
            exclusions>
        dependency>
        <dependency>
            <groupId>org.apache.kafkagroupId>
            <artifactId>kafka-clientsartifactId>
            <version>0.10.2.1version>
        dependency>
        <dependency>
            <groupId>org.apache.hbasegroupId>
            <artifactId>hbase-shaded-clientartifactId>
            <version>1.4.3version>
        dependency>
        <dependency>
            <groupId>org.apache.hbasegroupId>
            <artifactId>hbase-commonartifactId>
            <version>1.4.3version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-sql-client_2.11artifactId>
            <version>1.10.0version>
            <exclusions>
                <exclusion>
                    <groupId>org.apache.flinkgroupId>
                    <artifactId>flink-shaded-hadoop2artifactId>
                exclusion>
                <exclusion>
                    <groupId>org.apache.flinkgroupId>
                    <artifactId>flink-shaded-hiveartifactId>
                exclusion>
                <exclusion>
                    <groupId>org.eclipse.jettygroupId>
                    <artifactId>jetty-allartifactId>
                exclusion>
                <exclusion>
                    <groupId>org.slf4jgroupId>
                    <artifactId>slf4j-apiartifactId>
                exclusion>
                <exclusion>
                    <groupId>log4jgroupId>
                    <artifactId>log4jartifactId>
                exclusion>
                <exclusion>
                    <groupId>org.slf4jgroupId>
                    <artifactId>slf4j-log4j12artifactId>
                exclusion>
            exclusions>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-jdbc_2.11artifactId>
            <version>1.10.0version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-planner-blink_2.11artifactId>
            <version>1.10.0version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-api-java-bridge_2.11artifactId>
            <version>1.10.0version>
        dependency>
        <dependency>
            <groupId>mysqlgroupId>
            <artifactId>mysql-connector-javaartifactId>
            <version>5.1.46version>
        dependency>
        <dependency>
            <groupId>com.alibabagroupId>
            <artifactId>druidartifactId>
            <version>1.1.21version>
        dependency>
        <dependency>
            <groupId>cglibgroupId>
            <artifactId>cglibartifactId>
            <version>2.2version>
        dependency>
    dependencies>

实体类

@Data
public class User implements Serializable {
    private Integer userID;
    private String userName;
    private String sex;
    private String address;
}
@Data
public class Product implements Serializable {
    private Integer productID;
    private String productName;
    private String productType;
}
@Data
public class Order implements Serializable {
    private Integer orderID;
    private Integer userID;
    private Integer productID;
    private Integer productCount;
    private Double money;
    private String buyDate;
}
@Data
public class Result implements Serializable {
    private String userName;
    private String productType;
    private String productName;
    private String buyDate;
    private Integer productCount;
    private Double totalMoney;
}

创建执行环境

public class Main {
    public static void main(String[] args)throws Exception{
        //1. 相关参数设置
        //创建流执行环境,并创建表执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //如果需要使用sql和table的话,这个必须设置
        EnvironmentSettings settings =  EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
        StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, settings);

        //非常关键,一定要设置启动检查点,设置最少一次处理语义和恰一次处理语义
        env.enableCheckpointing(60000, CheckpointingMode.EXACTLY_ONCE);
        //按照处理时间进行计算
        env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
        // checkpoint的清除策略
        CheckpointConfig checkpointConfig = env.getCheckpointConfig();
        checkpointConfig.enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
        checkpointConfig.setTolerableCheckpointFailureNumber(0);
        //设置重启策略:3次尝试,每次尝试间隔60s
        env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 60000));
        Map<String, String> maps = new ImmutableMap.Builder<String, String>().
                put("kafka.url", args[0]).
                put("hbase.zookeeper.quorum", args[1]).
                put("dbUrl", args[2]).
                put("dbName", args[3]).
                put("user", args[4]).
                put("psw", args[5]).build();
        //相关数据设置成全局配置,以便再后面的function中获取
        env.getConfig().setGlobalJobParameters(ParameterTool.fromMap(maps));
        //table中时间转换函数
        tEnv.registerFunction("time_format", new DateFormatFunction());

        //2. 创建hbase环境
        //从全局配置中获取hbase的zookeeper地址
        String zkUrl = env.getConfig().getGlobalJobParameters().toMap().getOrDefault("hbase.zookeeper.quorum", "");
        Configuration conf = HBaseConfiguration.create();
        conf.set("hbase.zookeeper.quorum", zkUrl);

        //2.1 创建hbase表
        TableDefine.defineUserHbaseTable(tEnv, conf);//创建用户表
        TableDefine.defineProductHbaseTable(tEnv, conf);//创建商品表


        //3. 创建kafka环境
        //3.1 从全局配置中获取kafka相关配置
        String kafkaUrl = env.getConfig().getGlobalJobParameters().toMap().getOrDefault("kafka.url", "");
        Properties props = new Properties();
        props.setProperty("bootstrap.servers",kafkaUrl);
        props.setProperty("group.id", "配置的groupID");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        //3.2 直接入库Hbase库的维度数据和需要进行实时计算的数据这里分别写了一个,因为还是有些不同的
        //3.2.1 维度数据的处理
        JobDefine.userJob(env, props);
        JobDefine.productJob(env, props);

        //实时计算的处理
        JobDefine.orderJob(env,tEnv,props);
        //执行任务
        env.execute("orderJob");
    }
}

将kafka读取的json串转换成具体是Java实体类

public class MyKafkaRichFlatMapFunction<OUT> extends RichFlatMapFunction<String, OUT> {
    private static Logger logger = LogManager.getLogger(MyKafkaRichFlatMapFunction.class);
    @Override
    public void flatMap(String value, Collector<OUT> collector) {
        try {
            if(value != null && !"".equals(value)){
                Class<OUT> tClass = (Class<OUT>)((ParameterizedType)getClass().getGenericSuperclass()).getActualTypeArguments()[0];
                OUT out = JSONObject.parseObject(value, tClass);
                collector.collect(out);
            }
        } catch (Exception e) {
            logger.error("AbstractKafkaRichFlatMapFunction 发生异常:" + value, e);
        }
    }
}

sql中用到的时间转换函数

public class DateFormatFunction extends ScalarFunction {
    public String eval(Timestamp time, String format) {
        return new SimpleDateFormat(format).format(new Date(time.getTime()));
    }
}

hbase 表定义

public class TableDefine {

    public static void defineUserHbaseTable(StreamTableEnvironment tEnv,Configuration conf){
        HBaseTableSource hBaseTableSource = new HBaseTableSource(conf, "t_user");
        //设置hbase表的rowKey及其类型
        hBaseTableSource.setRowKey("rowKey", Integer.class);
        //设置hbase表的字段及其类型 第一个参数为列簇,第二个参数为字段名(最后简写以减少存储空间和执行效率),第三个参数为类型
        hBaseTableSource.addColumn("f", "uid", Integer.class);
        hBaseTableSource.addColumn("f", "uname", String.class);
        hBaseTableSource.addColumn("f", "sex", String.class);
        hBaseTableSource.addColumn("f", "address", String.class);
        //向flinktable注册处理函数 
        // 第一个参数为注册函数名字,即flink-sql中的表名,而new HBaseTableSource(conf, "t_user")中的t_user为hbase的表名
        // 第二个参数是一个TableFunction,返回结果为要查询出的数据列,即hbase表addColumn的哪些列,参数为rowkey,表示根据rowkey即userID进行查询
        tEnv.registerFunction("t_user", hBaseTableSource.getLookupFunction(new String[]{"rowKey"}));
    }

    public static void defineProductHbaseTable(StreamTableEnvironment tEnv,Configuration conf){
        HBaseTableSource hBaseTableSource = new HBaseTableSource(conf, "t_product");
        //设置hbase表的rowKey及其类型
        hBaseTableSource.setRowKey("rowKey", Integer.class);
        //设置hbase表的字段及其类型 第一个参数为列簇,第二个参数为字段名(最后简写以减少存储空间和执行效率),第三个参数为类型
        hBaseTableSource.addColumn("f", "pid", Integer.class);
        hBaseTableSource.addColumn("f", "pname", String.class);
        hBaseTableSource.addColumn("f", "pt", String.class);
        //向flinktable注册处理函数 
        // 第一个参数为注册函数名字,即flink-sql中的表名,而new HBaseTableSource(conf, "t_product")中的t_product为hbase的表名
        // 第二个参数是一个TableFunction,返回结果为要查询出的数据列,即hbase表addColumn的哪些列,参数为rowkey,表示根据rowkey即userID进行查询
        tEnv.registerFunction("t_product", hBaseTableSource.getLookupFunction(new String[]{"rowKey"}));
    }
}

hbase sink 定义

//抽象类
public abstract class AbstractHbaseSinkFunction<OUT> extends RichSinkFunction<OUT> {
    protected static String cf_String = "f";
    protected static byte[] cf = Bytes.toBytes(cf_String);
    protected String tableName = null;
    private Connection connection;
    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        ExecutionConfig.GlobalJobParameters globalParams = getRuntimeContext().getExecutionConfig()
                .getGlobalJobParameters();
        org.apache.hadoop.conf.Configuration conf = HBaseConfiguration.create();
        conf.set("hbase.zookeeper.quorum", globalParams.toMap().get("hbase.zookeeper.quorum"));
        if (null == connection) {
            connection = ConnectionFactory.createConnection(conf);
        }
    }

    @Override
    public void invoke(OUT value, Context context) throws Exception {
        HTable table = null;
        try  {
            table = (HTable) connection.getTable(TableName.valueOf(tableName));
            handle(value, context, table);
        } finally {
            table.close();
        }
    }

    protected abstract void handle(OUT value, Context context, HTable table) throws Exception;

    @Override
    public void close() throws Exception {
        connection.close();
    }

    protected byte[] getByteValue(Object value){
        if(value==null){
            return Bytes.toBytes("");
        }else{
            return Bytes.toBytes(value.toString());
        }
    }

}
//用户sink
public class UserHbaseSinkFunction extends AbstractHbaseSinkFunction<User> {

    public UserHbaseSinkFunction(){
        tableName = "t_user";
    }
    @Override
    protected void handle(User value, Context context, HTable table) throws Exception {
        Integer rowkey1 = value.getUserID();
        Put put1 = new Put(Bytes.toBytes(rowkey1));
        //这里的字段必须和定义表时的字段保存一致
        put1.addColumn(cf, Bytes.toBytes("uid"), getByteValue(value.getUserID()));
        put1.addColumn(cf, Bytes.toBytes("uname"), getByteValue(value.getUserName()));
        put1.addColumn(cf, Bytes.toBytes("sex"), getByteValue(value.getSex()));
        put1.addColumn(cf, Bytes.toBytes("addr"), getByteValue(value.getAddress()));
        table.put(put1);
    }
}
//商品sink
public class ProductHbaseSinkFunction extends AbstractHbaseSinkFunction<Product> {
    public ProductHbaseSinkFunction(){
        tableName = "t_product";
    }
    @Override
    protected void handle(Product value, Context context, HTable table) throws Exception {
         //这里的字段必须和定义表时的字段保存一致
        Integer rowkey1 = value.getProductID();
        Put put1 = new Put(Bytes.toBytes(rowkey1));
        put1.addColumn(cf, Bytes.toBytes("pid"), getByteValue(value.getProductID()));
        put1.addColumn(cf, Bytes.toBytes("pname"), getByteValue(value.getProductName()));
        put1.addColumn(cf, Bytes.toBytes("pt"), getByteValue(value.getProductType()));
        table.put(put1);
    }
}

MySQL sink 定义

public class OrderMysqlSinkFunction extends RichSinkFunction<List<Result>> {
    public static Logger logger = LogManager.getLogger(OrderMysqlSinkFunction.class);
    private DataSource dataSource = null;

    @Override
    public void open(Configuration parameters) throws Exception {
        logger.info("MysqlSinkFunction open");
        super.open(parameters);
        Map<String, String> globalParams = getRuntimeContext().getExecutionConfig().getGlobalJobParameters().toMap();

        String dbUrl = globalParams.get("dbUrl");
        String dbName = globalParams.get("dbName");
        String user = globalParams.get("user");
        String psw = globalParams.get("psw");
        try {
            dataSource = DBUtil.getDataSource(dbUrl, dbName, user, psw);
        } catch (Exception e) {
            logger.error("" + e);
        }
    }

    @Override
    public void invoke(List<Result> results, Context context) throws Exception {
        Connection connection = dataSource.getConnection();
        PreparedStatement ps = null;
        try {
            //构建sql userName, productType, productName, buyDate, productCount, totalMoney
            String sql = "INSERT INTO t_result (userName, productType, productName, buyDate, productCount, totalMoney) " +
                    " values (?,?,?,?,?,?) on duplicate key " +
                    " update productCount = values(productCount),totalMoney=values(totalMoney) ";
            ps = connection.prepareStatement(sql);

            for (Result record : results) {
                ps.setObject(1, record.getUserName());
                ps.setObject(2, record.getProductType());
                ps.setObject(3, record.getProductName());
                ps.setObject(4, record.getBuyDate());
                ps.setObject(5, record.getProductCount());
                ps.setObject(6, record.getTotalMoney());
                ps.addBatch();
            }
            ps.executeBatch();
        }catch (Exception e){
            logger.error("数据入库异常:"+e);
            throw new RuntimeException("gcoll_vmotask_sum保存数据库失败:"+e);
        }finally {
            DBUtil.close(ps);
        }
    }

    @Override
    public void close() {
        logger.info("MysqlSinkFunction close");
        DBUtil.closeDataSource();
    }
}

计算任务定义

public class JobDefine {
//用户数据直接保存hbase
    public static void userJob(StreamExecutionEnvironment env,Properties props){
        //获取kafka对应的source流
        SingleOutputStreamOperator<String> userSource = env.addSource(new FlinkKafkaConsumer010<>("user表对应的topic", new SimpleStringSchema(), props));
        //将kafka读取的数据(为json字符串SimpleStringSchema)转换成Java对象 自定义类,这里必须调用.returns(User.class),不然启动会报错
        SingleOutputStreamOperator<User> userMessageStream=userSource.flatMap(new MyKafkaRichFlatMapFunction<User>()).returns(User.class);
        //将Java对象保存到hbase中
        userMessageStream.addSink(new UserHbaseSinkFunction()).name("UserHbaseSinkFunction");
    }
//商品数据直接保存hbase
    public static void productJob(StreamExecutionEnvironment env,Properties props){
        //获取kafka对应的source流
        SingleOutputStreamOperator<String> productSource = env.addSource(new FlinkKafkaConsumer010<>("product表对应的topic", new SimpleStringSchema(), props));
        //将kafka读取的数据(为json字符串SimpleStringSchema)转换成Java对象 自定义类,这里必须调用.returns(Product.class),不然启动会报错
        SingleOutputStreamOperator<Product> productStream=productSource.flatMap(new MyKafkaRichFlatMapFunction<Product>()).returns(Product.class);
        //将Java对象保存到hbase中
        productStream.addSink(new ProductHbaseSinkFunction()).name("ProductHbaseSinkFunction");
    }
//订单数据需要进行计算统计
    public static void orderJob(StreamExecutionEnvironment env, StreamTableEnvironment tEnv,Properties props){
        SingleOutputStreamOperator orderSource = env.addSource(new FlinkKafkaConsumer010<>("order表对应的topic", new SimpleStringSchema(), props));
        //将kafka读取的数据(为json字符串SimpleStringSchema)转换成Java对象 自定义类,这里必须调用.returns(Order.class),不然启动会报错
        SingleOutputStreamOperator<Order> orderMessageStream = orderSource.flatMap(new MyKafkaRichFlatMapFunction<Order>()).returns(Order.class);
        //将当前订单流注册到flinktable 中,第一个参数就是表名,第二个参数就是数据流
        tEnv.createTemporaryView("t_order", orderMessageStream);
        //将order数据进行实时计算并将结果保存到MySQL中
        new OrderFunction().handle(orderMessageStream, env,tEnv);
    }
}

实时计算

public class OrderFunction {

    public void handle(SingleOutputStreamOperator streamOperator,StreamExecutionEnvironment env,
                       StreamTableEnvironment tEnv){
        /**
         * 这里比较坑,需要说明下:
         * 1. 字段顺序的问题,select中的字段顺序和类型必须和Result类中一致,不然会报异常 Field types of query result and registered TableSink  do not match
         *    flink框架会根据返回结果Result类中的属性的字典升序进行排序,并将排序完后的字段及其字段类型和select 中的字段进行类型匹配,只要类型匹配成功则成功
         *    如下面的返回类型Result类,字段按照字典升序排列后为:[buyDate: STRING, productCount: INT, productName: STRING, productType: STRING, totalMoney: DOUBLE, userName: STRING]
         *    那么我们的select字段的返回类型就必须为:[STRING, INT, STRING, STRING,DOUBLE,STRING]
         *    假设我们的sql为(sum(o.productCount) ,o.buyDate交换了位置):select sum(o.productCount) ,o.buyDate,p.pname,p.pt,sum(o.money*o.productCount) ,u.uname 则会报错Field types of query result and registered TableSink  do not match
         *    假设我们的sql为(pt和pname交换了位置):select o.buyDate,sum(o.productCount),p.pt,p.pname,sum(o.money*o.productCount) ,u.uname,那么Result类
         *          的productName的值将会为pt的值,productType的值将会为pname的值
         * 2. 对于hbase维度数据,维度数据的字段为简写,如username被写成的uname,那么这里select 中的字段必须和hbase表定义的字段一致,如p.pname,u.uname
         * 3. 如果select中的字段类型和result类中字段类型不一样时,需要在sql中使用相关函数进行转换
         * 4. 在这里的t_order必须和JobDefine中注册到table环境中的【视图名字】一致,如tEnv.createTemporaryView("t_order", orderMessageStream);
         * 5. 这里的t_user必须和TableDefine中注册到table环境中的【注册函数名】 一致,如:tEnv.registerFunction("t_user", hBaseTableSource.getLookupFunction(new String[]{"rowKey"}));
         * 6.这里的t_product必须和TableDefine中注册到table环境中的【注册函数名】 一致,如:tEnv.registerFunction("t_product", hBaseTableSource.getLookupFunction(new String[]{"rowKey"}));
         *
         */
        Table collectionTaskResult = tEnv.sqlQuery("select o.buyDate,sum(o.productCount) ,p.pname,p.pt,sum(o.money*o.productCount) ,u.uname" +
                " from t_order o,lateral table(t_user(o.userID)) u,lateral table(t_product(o.productID)) p " +
                " where o.userID=u.uid and o.productID=p.pid group by u.uname,p.pt,p.pname,o.buyDate");
        DataStream<Tuple2<Boolean, Result>> stream = tEnv.toRetractStream(collectionTaskResult, Result.class);
        //windAll 这里是为了减轻数据库的压力,每10秒保存一次库,在存库前将数据进行处理,只保存唯一键相同的一条数据
        stream.windowAll(TumblingProcessingTimeWindows.of(Time.seconds(10)))
                .process(new ProcessAllWindowFunction<Tuple2<Boolean, Result>, List<Result>, TimeWindow>() {
            
            //values的数量等于这个时间窗口范围内的所有数据量
            public void process(Context context, Iterable<Tuple2<Boolean, Result>> values, Collector<List<Result>> out) throws Exception {
                Iterator<Tuple2<Boolean, Result>> iterator = values.iterator();
                Map<String, Result> result = Maps.newHashMap();
                while (iterator.hasNext()) {
                    Tuple2<Boolean, Result> tuple = iterator.next();
                    //输入流进行收集
                    if (tuple.getField(0)) {
                        Result item = tuple.getField(1);
                        //这样map的结果表示为唯一键相同时的最新数据
                        result.put(item.getUserName()+":"+item.getProductType()+":"+item.getProductName()+":"+item.getBuyDate(), item);
                    }
                }
                out.collect(Lists.newArrayList(result.values()));
            }
        }).setParallelism(1)//之所以要将并行度设置为1,是为了防止并发写入数据库导致数据错误
                //将Java对象保存到MySQL中
                .addSink(new OrderMysqlSinkFunction()).name("OrderMysqlSinkFunction");


    }
}

是不是感觉flink-sql很牛逼呢,但就像文章最开始所述的flink-sql是在flink流式计算的基础上进行了高度抽象,它不能实现所有功能。

订单支付成功后,可以退款,退款完成后订单状态会变成失效,那么统计结果中不应该包含退款成功后相关数据,
那么如何使用sql进行计算呢?我也不知道,但可以使用流式计算进行操作,下次在总结。

MySQL数据库连接工具类

public class DBUtil {
    private static Logger logger = LogManager.getLogger(DBUtil.class);
    private static DruidDataSource dataSource;

    public static DruidDataSource getDataSource(String dbUrl, String dbName, String username, String password) {
        try {
            if (dataSource == null) {
                synchronized (DBUtil.class) {
                    if (dataSource == null) {
                        dataSource = new DruidDataSource();
                        dataSource.setDriverClassName("com.mysql.jdbc.Driver");
                        dataSource.setUrl("jdbc:mysql://#/%?autoReconnect=true&useUnicode=true&useAffectedRows=true&characterEncoding=utf8".replace("#", dbUrl).replace("%", dbName));
                        dataSource.setUsername(username);
                        dataSource.setPassword(password);

                        //configuration
                        dataSource.setInitialSize(20);
                        dataSource.setMinIdle(20);
                        dataSource.setMaxActive(100);
                        dataSource.setMaxWait(60000);
                        dataSource.setTimeBetweenEvictionRunsMillis(60000);
                        dataSource.setMinEvictableIdleTimeMillis(300000);
                        dataSource.setValidationQuery("SELECT 1 FROM DUAL");
                        dataSource.setTestWhileIdle(true);
                        dataSource.setTestOnBorrow(false);
                        dataSource.setTestOnReturn(false);
                        dataSource.setPoolPreparedStatements(true);
                        dataSource.setMaxPoolPreparedStatementPerConnectionSize(20);
                        dataSource.setFilters("stat,wall,log4j");
                        dataSource.setConnectionProperties("druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000");
                    }
                }
            }
        } catch (Exception e) {
            logger.error("初始化数据源信息异常....", e);
        }
        return dataSource;
    }

    /**
     * 获取数据库连接池
     */
    public static DataSource getDataSource() {
        return dataSource;
    }

    /**
     * 关闭数据库连接池
     */
    public static void closeDataSource() {
        logger.info("method datasource close !");
        if (dataSource != null) {
            dataSource.close();
        }
    }

    /**
     * 获取数据库连接
     */
    public static Connection getConnection() {
        Connection conn = null;
        try {
            conn = dataSource.getConnection();
        } catch (SQLException e) {
            logger.error("获取数据库连接异常", e);
        }
        return conn;
    }

    /**
     * 释放数据库连接
     */
    public static void close(Connection conn,Statement st,ResultSet rs) {
        if(rs!=null) {
            try {
                rs.close();
            } catch (SQLException e) {
                logger.error("释放数据库连接异常", e);
            }
        }
        close(conn,st);
    }
    public static void close(Connection conn,Statement st) {
        if(st!=null) {
            try {
                st.close();
            } catch (SQLException e) {
                logger.error("关闭Statement异常", e);
            }
        }
        close(conn);
    }

    public static void close(Statement st) {
        if(st!=null) {
            try {
                st.close();
            } catch (SQLException e) {
                logger.error("关闭Statement异常", e);
            }
        }
    }

    public static void close(Connection conn) {
        if(conn!=null) {
            try {
                conn.close();
            } catch (SQLException e) {
                logger.error("关闭SConnection异常", e);
            }
        }
    }
    public static void commit(Connection conn){
        if(conn!=null) {
            try {
                conn.commit();
            } catch (SQLException e) {
                logger.error("提交事务异常", e);
            }
        }
    }
    public static void rollback(Connection conn){
        if(conn!=null) {
            try {
                conn.rollback();
            } catch (SQLException e) {
                logger.error("回滚异常", e);
            }
        }
    }
}

你可能感兴趣的:(flink学习笔记)