人工智能Pacman(二)(2018-05-24)

# search.py

# ---------

# Licensing Information:  You are free to use or extend these projects for

# educational purposes provided that (1) you do not distribute or publish

# solutions, (2) you retain this notice, and (3) you provide clear

# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.

#

# Attribution Information: The Pacman AI projects were developed at UC Berkeley.

# The core projects and autograders were primarily created by John DeNero

# ([email protected]) and Dan Klein ([email protected]).

# Student side autograding was added by Brad Miller, Nick Hay, and

# Pieter Abbeel ([email protected]).

"""

In search.py, you will implement generic search algorithms which are called by

Pacman agents (in searchAgents.py).

"""

import util

class SearchProblem:

    """

    This class outlines the structure of a search problem, but doesn't implement

    any of the methods (in object-oriented terminology: an abstract class).

    You do not need to change anything in this class, ever.

    """

    def getStartState(self):

        """

        Returns the start state for the search problem.

        """

        util.raiseNotDefined()

    def isGoalState(self, state):

        """

          state: Search state

        Returns True if and only if the state is a valid goal state.

        """

        util.raiseNotDefined()

    def getSuccessors(self, state):

        """

          state: Search state

        For a given state, this should return a list of triples, (successor,

        action, stepCost), where 'successor' is a successor to the current

        state, 'action' is the action required to get there, and 'stepCost' is

        the incremental cost of expanding to that successor.

        """

        util.raiseNotDefined()

    def getCostOfActions(self, actions):

        """

        actions: A list of actions to take

        This method returns the total cost of a particular sequence of actions.

        The sequence must be composed of legal moves.

        """

        util.raiseNotDefined()

def tinyMazeSearch(problem):

    """

    Returns a sequence of moves that solves tinyMaze.  For any other maze, the

    sequence of moves will be incorrect, so only use this for tinyMaze.

    """

    from game import Directions

    s = Directions.SOUTH

    w = Directions.WEST

    return  [s, s, w, s, w, w, s, w]

def depthFirstSearch(problem):

    """

    Search the deepest nodes in the search tree first.

    Your search algorithm needs to return a list of actions that reaches the

    goal. Make sure to implement a graph search algorithm.

    To get started, you might want to try some of these simple commands to

    understand the search problem that is being passed in:

    print "Start:", problem.getStartState()

    print "Is the start a goal?", problem.isGoalState(problem.getStartState())

    print "Start's successors:", problem.getSuccessors(problem.getStartState())

    """

    "*** YOUR CODE HERE ***"

    from util import Stack

    from game import Directions

    fringe = Stack()

    closed = []

    fringe.push((problem.getStartState(), []))

    while not fringe.isEmpty():

        cur_node, actions = fringe.pop()

        if problem.isGoalState(cur_node):

            return actions

        if cur_node not in closed:

            expand = problem.getSuccessors(cur_node)

            closed.append(cur_node)

            for location, direction, cost in expand:

                if (location not in closed):

                    fringe.push((location, actions + [direction]))

    util.raiseNotDefined()

def breadthFirstSearch(problem):

    """Search the shallowest nodes in the search tree first."""

    "*** YOUR CODE HERE ***"

    from util import Queue

    from game import Directions

    fringe = Queue()

    closed = []

    fringe.push((problem.getStartState(), []))

    while not fringe.isEmpty():

        cur_node, actions = fringe.pop()

        if problem.isGoalState(cur_node):

            return actions

        if cur_node not in closed:

            expand = problem.getSuccessors(cur_node)

            closed.append(cur_node)

            for location, direction, cost in expand:

                if (location not in closed):

                    fringe.push((location, actions + [direction]))

    util.raiseNotDefined()

def uniformCostSearch(problem):

    """Search the node of least total cost first."""

    "*** YOUR CODE HERE ***"

    start_point = problem.getStartState()

    queue = util.PriorityQueueWithFunction(lambda x: x[2])

    queue.push((start_point,None,0))

    cost=0

    visited = []

    path = []

    parentSeq = {}

    parentSeq[(start_point,None,0)]=None

    while queue.isEmpty() == False:

        current_fullstate = queue.pop()

        #print current_fullstate

        if (problem.isGoalState(current_fullstate[0])):

            break

        else:

            current_state = current_fullstate[0]

            if current_state not in visited:

                visited.append(current_state)

            else:

                continue

            successors = problem.getSuccessors(current_state)

            for state in successors:

                cost= current_fullstate[2] + state[2];

                #print state,cost

                if state[0] not in visited:

                    queue.push((state[0],state[1],cost))

                    #parentSeq[state] = current_fullstate

                    parentSeq[(state[0],state[1])] = current_fullstate

    child = current_fullstate

    while (child != None):

        path.append(child[1])

        if child[0] != start_point:

            child = parentSeq[(child[0],child[1])]

        else:

            child = None

    path.reverse()

    return path[1:]

    #util.raiseNotDefined()

def nullHeuristic(state, problem=None):

    """

    A heuristic function estimates the cost from the current state to the nearest

    goal in the provided SearchProblem.  This heuristic is trivial.

    """

    return 0

def aStarSearch(problem, heuristic=nullHeuristic):

    """Search the node that has the lowest combined cost and heuristic first."""

    "*** YOUR CODE HERE ***"

    from sets import Set

    fringe = util.PriorityQueue()

    actions = []

    fringe.push((problem.getStartState(),actions),0)

    visited = []

    tmpActions = []

    while fringe:

        currState,actions = fringe.pop()

        if problem.isGoalState(currState):

            break

        if currState not in visited:

            visited.append(currState)

            successors = problem.getSuccessors(currState)

            for successor, action, cost in successors:

                tempActions = actions + [action]

                nextCost = problem.getCostOfActions(tempActions) + heuristic(successor,problem)

                if successor not in visited:

                    fringe.push((successor,tempActions),nextCost)

    return actions

    #util.raiseNotDefined()

# Abbreviations

bfs = breadthFirstSearch

dfs = depthFirstSearch

astar = aStarSearch

ucs = uniformCostSearch

你可能感兴趣的:(人工智能Pacman(二)(2018-05-24))