测试代码:
https://github.com/kevindai007/springboot_houseSearch/tree/master/src/test/java/com/kevindai/juc
今天咱们一起来学习一下FutureTask,FutureTask实现RunnableFuture,RunnableFuture又继承Runable和Future,因此FutureTask即是Runable又是Future
下面咱们看看FutureTask的一些主要属性
/**
* 线程间存在的转换关系
* NEW -> COMPLETING -> NORMAL
* NEW -> COMPLETING -> EXCEPTIONAL
* NEW -> CANCELLED
* NEW -> INTERRUPTING -> INTERRUPTED
*/
//线程状态
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;
//要执行的任务
private Callable callable;
//返回结果
private Object outcome;
//执行任务的线程
private volatile Thread runner;
//单向等待链表
private volatile WaitNode waiters;
public FutureTask(Callable callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW;
}
public FutureTask(Runnable runnable, V result) {
//调用Executors的callable()方法,把runnable构造成callable
this.callable = Executors.callable(runnable, result);
this.state = NEW;
}
static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() { thread = Thread.currentThread(); }
}
咱们再来看看其主要方法
public void run() {
//状态不为NEW或者给runner赋值失败就直接返回
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
//运行异常结束
setException(ex);
}
if (ran)
//正常结束
set(result);
}
} finally {
runner = null;
int s = state;
//处理线程中断
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
//此方法与run()方法类似,区别在于此方法不会设置任务的执行结果,最后返回是否正确的执行并复位
protected boolean runAndReset() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return false;
boolean ran = false;
int s = state;
try {
Callable c = callable;
if (c != null && s == NEW) {
try {
//注意这里的区别,这里没有设置返回值
c.call(); // don't set result
ran = true;
} catch (Throwable ex) {
setException(ex);
}
}
} finally {
runner = null;
s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
// 是否正确的执行并复位
return ran && s == NEW;
}
看看上面用到的线程正常执行的set()、异常的setException()
protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
//设置结果
outcome = v;
//更改状态
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
}
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
//让所有等待都恢复运行
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
//空方法留着扩展
done();
callable = null; // to reduce footprint
}
protected void setException(Throwable t) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = t;
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
finishCompletion();
}
}
再来看看get()
public V get() throws InterruptedException, ExecutionException {
int s = state;
//线程还没有执行完
if (s <= COMPLETING)
s = awaitDone(false, 0L);
//获取返回结果
return report(s);
}
//会等待超时的get()
public V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
if (unit == null)
throw new NullPointerException();
int s = state;
//如果线程未执行完成,且超过等待时间,则抛出异常
if (s <= COMPLETING &&
(s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
throw new TimeoutException();
return report(s);
}
get()其实很简单,如果线程没有执行完就加入链表等待,否则就返回(设置过超时时间会判断是否超时)
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
//计算到期时间
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
//如果线程被中断,则移除等待节点,抛出异常
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
//如果任务执行完毕则返回
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING)
Thread.yield();
//首次循环一般会进入这里,创建一个WaitNode
else if (q == null)
q = new WaitNode();
else if (!queued)
// CAS设置栈顶节点
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
//是否需要超时控制
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
//如果没有设置超时,会一直阻塞
LockSupport.park(this);
}
}
//移除等待的节点
private void removeWaiter(WaitNode node) {
if (node != null) {
node.thread = null;
retry:
//自旋保证移除节点成功
for (;;) {
for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
s = q.next;
//q.thread != null说明该q节点不需要移除
if (q.thread != null)
pred = q;
//如果q.thread == null,且pred != null,需要删除q节点
else if (pred != null) {
pred.next = s;
//pred.thread == null时说明在并发情况下被其他线程修改了
//返回第一个for循环重试
if (pred.thread == null)
continue retry;
}
else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
q, s))
continue retry;
}
break;
}
}
}
到这里主要的方法都看完了,咱们做个简单的总结:
FutureTask的运行的基本流程如下