LockSupport源码详细分析

一. LockSupport类介绍

前面分析中,阻塞和唤醒线程都会使用到LockSupport工具来完成相应工作,LockSupport定义了一组公共静态方法,这些方法提供了最基本的线程阻塞和唤醒公共,而LockSupport也成为构建同步组件的基础工具。

 

LockSupport定义了一组以park开头的方法用来阻塞当前线程,以及upark方法用来唤醒线程。这些方法如下所示:

方法名称 描述
void park() 阻塞当前线程,如果调用unpark(Thread)或者当前线程被中断,才能从park()方法返回
void parkNanos(long nanos) 阻塞当前线程,最长不超过nanos纳秒,返回条件在park()的基础上增加了超时返回
void parkUntil(long deadline) 阻塞当前线程,直到deadline
void unpark(Thread thread) 唤醒处于阻塞的线程thread

三种形式的 park 还各自支持一个 blocker 对象参数。此对象在线程受阻塞时被记录,以允许监视工具和诊断工具确定线程受阻塞的原因。(这样的工具可以使用方法 getBlocker(java.lang.Thread) 访问 blocker。)建议最好使用这些形式,而不是不带此参数的原始形式。在锁实现中提供的作为 blocker 的普通参数是 this。
看下线程dump的结果来理解blocker的作用。

LockSupport源码详细分析_第1张图片

从线程dump结果可以看出:
有blocker的可以传递给开发人员更多的现场信息,通过jstack命令可以非常方便的监控具体的阻塞对象,方便定位问题。所以java6新增加带blocker入参的系列park方法,替代原有的park方法。

 

Unsafe的park和unpark

LockSupport类是Java6(JSR166-JUC)引入的一个类,提供了基本的线程同步原语。LockSupport实际上是调用了Unsafe类里的函数,归结到Unsafe里,只有两个函数:

/**
 * 为指定线程提供“许可(permit)”
 */
public native void unpark(Thread jthread);

/**
 * 阻塞指定时间等待“许可”。
 * @param isAbsolute: 时间是绝对的,还是相对的
 * @param time:等待许可的时间
 */
public native void park(boolean isAbsolute, long time);  

上面的这个“许可”是不能叠加的,“许可”是一次性的。

比如线程B连续调用了三次unpark函数,当线程A调用park函数就使用掉这个“许可”,如果线程A再次调用park,则进入等待状态。

注意,unpark函数可以先于park调用。比如线程B调用unpark函数,给线程A发了一个“许可”,那么当线程A调用park时,它发现已经有“许可”了,那么它会马上再继续运行。

可能有些朋友还是不理解“许可”这个概念,我们深入HotSpot的源码来看看。

每个java线程都有一个Parker实例,Parker类是这样定义的:

class Parker : public os::PlatformParker {  
private:  
  volatile int _counter ;  
  ...  
public:  
  void park(bool isAbsolute, jlong time);  
  void unpark();  
  ...  
}  
class PlatformParker : public CHeapObj {  
  protected:  
    pthread_mutex_t _mutex [1] ;  
    pthread_cond_t  _cond  [1] ;  
    ...  
}  

可以看到Parker类实际上用Posix的mutex,condition来实现的。在Parker类里的_counter字段,就是用来记录所谓的“许可”的。

当调用park时,先尝试直接能否直接拿到“许可”,即_counter>0时,如果成功,则把_counter设置为0,并返回:

void Parker::park(bool isAbsolute, jlong time) {  
  // Ideally we'd do something useful while spinning, such  
  // as calling unpackTime().  
  
  
  // Optional fast-path check:  
  // Return immediately if a permit is available.  
  // We depend on Atomic::xchg() having full barrier semantics  
  // since we are doing a lock-free update to _counter.  
  if (Atomic::xchg(0, &_counter) > 0) return;  

如果不成功,则构造一个ThreadBlockInVM,然后检查_counter是不是>0,如果是,则把_counter设置为0,unlock mutex并返回:

ThreadBlockInVM tbivm(jt);  
if (_counter > 0)  { // no wait needed  
  _counter = 0;  
  status = pthread_mutex_unlock(_mutex);  

否则,再判断等待的时间,然后再调用pthread_cond_wait函数等待,如果等待返回,则把_counter设置为0,unlock mutex并返回:

if (time == 0) {  
  status = pthread_cond_wait (_cond, _mutex) ;  
}  
_counter = 0 ;  
status = pthread_mutex_unlock(_mutex) ;  
assert_status(status == 0, status, "invariant") ;  
OrderAccess::fence();  

当unpark时,则简单多了,直接设置_counter为1,再unlock mutext返回。如果_counter之前的值是0,则还要调用pthread_cond_signal唤醒在park中等待的线程:

void Parker::unpark() {  
  int s, status ;  
  status = pthread_mutex_lock(_mutex);  
  assert (status == 0, "invariant") ;  
  s = _counter;  
  _counter = 1;  
  if (s < 1) {  
     if (WorkAroundNPTLTimedWaitHang) {  
        status = pthread_cond_signal (_cond) ;  
        assert (status == 0, "invariant") ;  
        status = pthread_mutex_unlock(_mutex);  
        assert (status == 0, "invariant") ;  
     } else {  
        status = pthread_mutex_unlock(_mutex);  
        assert (status == 0, "invariant") ;  
        status = pthread_cond_signal (_cond) ;  
        assert (status == 0, "invariant") ;  
     }  
  } else {  
    pthread_mutex_unlock(_mutex);  
    assert (status == 0, "invariant") ;  
  }  
}  

简而言之,是用mutex和condition保护了一个_counter的变量,当park时,这个变量置为了0,当unpark时,这个变量置为1。

值得注意的是在park函数里,调用pthread_cond_wait时,并没有用while来判断,所以posix condition里的"Spurious wakeup"一样会传递到上层Java的代码里。关于"Spurious wakeup",可以参考:并行编程之条件变量(posix condition variables)

3、LockSupport源码分析

解释完Unsafe的park和unpark的实现原理,我们再来看LockSupport的源码时就会异常清晰,因为不复杂,所以直接看注释吧。

public class LockSupport {
    private LockSupport() {} // Cannot be instantiated.

    private static void setBlocker(Thread t, Object arg) {
        UNSAFE.putObject(t, parkBlockerOffset, arg);
    }
    
    /**
     * 返回提供给最近一次尚未解除阻塞的 park 方法调用的 blocker 对象。
     * 如果该调用不受阻塞,则返回 null。
     * 返回的值只是一个瞬间快照,即由于未解除阻塞或者在不同的 blocker 对象上受阻而具有的线程。
     */
    public static Object getBlocker(Thread t) {
        if (t == null)
            throw new NullPointerException();
        return UNSAFE.getObjectVolatile(t, parkBlockerOffset);
    }
    
    /**
     * 如果给定线程的许可尚不可用,则使其可用。
     * 如果线程在 park 上受阻塞,则它将解除其阻塞状态。
     * 否则,保证下一次调用 park 不会受阻塞。
     * 如果给定线程尚未启动,则无法保证此操作有任何效果。 
     * @param thread: 要执行 unpark 操作的线程;该参数为 null 表示此操作没有任何效果。
     */
    public static void unpark(Thread thread) {
        if (thread != null)
            UNSAFE.unpark(thread);
    }

    /**
     * 为了线程调度,在许可可用之前阻塞当前线程。 
     * 如果许可可用,则使用该许可,并且该调用立即返回;
     * 否则,为线程调度禁用当前线程,并在发生以下三种情况之一以前,使其处于休眠状态:
     *  1. 其他某个线程将当前线程作为目标调用 unpark
     *  2. 其他某个线程中断当前线程
     *  3. 该调用不合逻辑地(即毫无理由地)返回
     */
    public static void park() {
        UNSAFE.park(false, 0L);
    }

    /**
     * 和park()方法类似,不过增加了等待的相对时间
     */
    public static void parkNanos(long nanos) {
        if (nanos > 0)
            UNSAFE.park(false, nanos);
    }

    /**
     * 和park()方法类似,不过增加了等待的绝对时间
     */
    public static void parkUntil(long deadline) {
        UNSAFE.park(true, deadline);
    }
    
    /**
     * 和park()方法类似,只不过增加了暂停的同步对象
     * @param blocker 导致此线程暂停的同步对象
     * @since 1.6
     */
    public static void park(Object blocker) {
        Thread t = Thread.currentThread();
        setBlocker(t, blocker);
        UNSAFE.park(false, 0L);
        setBlocker(t, null);
    }
    
    /**
     * parkNanos(long nanos)方法类似,只不过增加了暂停的同步对象
     * @param blocker 导致此线程暂停的同步对象
     * @since 1.6
     */
    public static void parkNanos(Object blocker, long nanos) {
        if (nanos > 0) {
            Thread t = Thread.currentThread();
            setBlocker(t, blocker);
            UNSAFE.park(false, nanos);
            setBlocker(t, null);
        }
    }
    
    /**
     * parkUntil(long deadline)方法类似,只不过增加了暂停的同步对象
     * @param blocker 导致此线程暂停的同步对象
     * @since 1.6
     */
    public static void parkUntil(Object blocker, long deadline) {
        Thread t = Thread.currentThread();
        setBlocker(t, blocker);
        UNSAFE.park(true, deadline);
        setBlocker(t, null);
    }

    static final int nextSecondarySeed() {
        int r;
        Thread t = Thread.currentThread();
        if ((r = UNSAFE.getInt(t, SECONDARY)) != 0) {
            r ^= r << 13;   // xorshift
            r ^= r >>> 17;
            r ^= r << 5;
        }
        else if ((r = java.util.concurrent.ThreadLocalRandom.current().nextInt()) == 0)
            r = 1; // avoid zero
        UNSAFE.putInt(t, SECONDARY, r);
        return r;
    }

    // Hotspot implementation via intrinsics API
    private static final sun.misc.Unsafe UNSAFE;
    private static final long parkBlockerOffset;
    private static final long SEED;
    private static final long PROBE;
    private static final long SECONDARY;
    static {
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class tk = Thread.class;
            parkBlockerOffset = UNSAFE.objectFieldOffset
                (tk.getDeclaredField("parkBlocker"));
            SEED = UNSAFE.objectFieldOffset
                (tk.getDeclaredField("threadLocalRandomSeed"));
            PROBE = UNSAFE.objectFieldOffset
                (tk.getDeclaredField("threadLocalRandomProbe"));
            SECONDARY = UNSAFE.objectFieldOffset
                (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
        } catch (Exception ex) { throw new Error(ex); }
    }
}

4、例子

看完LockSupport的源码,我们来动手写几个例子来验证一下猜想是否正确。

4.1、先park再unpark

public class LockSupportTest {

    public static void main(String[] args) throws InterruptedException {
        String a = new String("A");
        Thread t = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("睡觉");
                LockSupport.park(a);
                System.out.println("起床");
            }
        });
        t.setName("A-Name");
        t.start();
        Thread.sleep(300000);
        System.out.println("妈妈喊我起床");
        LockSupport.unpark(t);
    }
}

输出结果:

睡觉
妈妈喊我起床
起床

不过在等待的过程中,我们可以用jstack查看是否能够打印出检测的对象A,找到A-Name这个线程确实看到了等待一个String对象

~ jps
5589 LockSupportTest

~ jstack 5589
"A-Name" #11 prio=5 os_prio=31 tid=0x00007fc143009800 nid=0xa803 waiting on condition [0x000070000c233000]
   java.lang.Thread.State: WAITING (parking)
        at sun.misc.Unsafe.park(Native Method)
        - parking to wait for  <0x000000076adf4d30> (a java.lang.String)
        at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
        at com.github.locksupport.LockSupportTest$1.run(LockSupportTest.java:18)
        at java.lang.Thread.run(Thread.java:745)

验证完unpark,接着我们来验证一下interrupt。

4.2、先interrupt再park

public class LockSupportTest {

    public static void main(String[] args) throws InterruptedException {
        String a = new String("A");
        Thread t = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("睡觉");
                LockSupport.park(a);
                System.out.println("起床");
                System.out.println("是否中断:" + Thread.currentThread().isInterrupted());
            }
        });
        t.setName("A-Name");
        t.start();
        t.interrupt();
        System.out.println("突然肚子很疼");
    }
}

可以看到中断后执行park会直接执行下面的方法,并不会抛出InterruptedException,输出结果如下:

突然肚子很疼
睡觉
起床
是否中断:true

4.3、先unpark再park

public class LockSupportTest {

    public static void main(String[] args) throws InterruptedException {
        String a = new String("A");
        Thread t = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("睡觉");
                LockSupport.park(a);
                System.out.println("7点到,起床");
            }
        });
        t.setName("A-Name");
        t.start();
        LockSupport.unpark(t);
        System.out.println("提前上好闹钟7点起床");
    }
}

按照上面说过的,先设置好许可(unpark)再获取许可的时候不会进行等待,正如我们说的那样输出如下:

提前上好闹钟7点起床
睡觉
7点到,起床

 

线程一共有六种状态,而park系列方法线程进入两种状态:WAITING等待状态或TIMED_WAITING等待状态。这两种状态都会使线程阻塞在当前位置。
那么怎么唤醒这两种状态的线程呢?

对于WAITING等待状态有两种唤醒方式:

  1. 调用对应的唤醒方法。这里就是LockSupport的unpark方法。
  2. 调用该线程变量的interrupt()方法,会唤醒该线程,并抛出InterruptedException异常。

对于TIMED_WAITING等待状态来说,它比WAITING状态多了一种唤醒方式,就是超过规定时间,那么线程会自动醒来。

 

思考一个问题

看完源码后,是不是觉得LockSupport.park()和unpark()和object.wait()和notify()很相似,那么它们有什么区别呢?

  1. 面向的主体不一样。LockSuport主要是针对Thread进进行阻塞处理,可以指定阻塞队列的目标对象,每次可以指定具体的线程唤醒。Object.wait()是以对象为纬度,阻塞当前的线程和唤醒单个(随机)或者所有线程。
  2. 实现机制不同。虽然LockSuport可以指定monitor的object对象,但和object.wait(),两者的阻塞队列并不交叉。可以看下测试例子。object.notifyAll()不能唤醒LockSupport的阻塞Thread.

 

对很少部分做整理,自己梳理一遍代码思路更加清晰,膜拜原作者!侵删!

本文参考:

                                 https://www.jianshu.com/p/4d19684917d2

                                 https://www.jianshu.com/p/1f16b838ccd8

你可能感兴趣的:(LockSupport源码详细分析)