python基础

注:object是所有类的基类,python中一切皆对象,类也是对象

1.取商和余数
divmod(10,3)
#输出(3,1)

2.次幂
pow(3,2,4)
#输出1

3.任意对象转为字符串
str()

4.计算字符串的表达式
eval(s)

5.对可迭代对象排序
a = [{'name':'xiaoming','age':18,'gender':'male'},{'name':'xiaohong','age':20,'gender':'female'}]
sorted(a,key=lambda x: x['age'],reverse=False)
#输出 [{'name': 'xiaoming', 'age': 18, 'gender': 'male'},
 {'name': 'xiaohong', 'age': 20, 'gender': 'female'}]

6.求和
sum()

7.nonlocal用于内嵌函数中,声明变量i为非局部变量
global声明全局变量

8.切片操作:slice()

9.dict()与zip()结合
dict(zip(['a','b'],[1,2]))
#输出 {'a': 1, 'b': 2}

10.集合,不允许有重复元素
set()

11.一键查看对象所用方法
dir(实例化对象)

12.对象是否有该属性
hasattr(对象,属性)

13.判断是否为类的实例
isinstance(对象,类)

14.类的类被称为:元类
Student = type('Student',(),{})

15.枚举对象:enumerate()

16.查看变量所占字节数
import sys

a = {'a':1,'b':2.0}
sys.getsizeof(a)
#输出:占用240个字节

17.过滤器
fil = filter(lambda x: x>10,[1,11,2,45,7,6,13])
list(fil)
#输出:[11, 45, 13]

18.返回对象的哈希值,自定义的实例都是可哈希的,list,dict,set等可变对象都是不可哈希的
hash(实例)

19.一键帮助:
help(实例)

20.创建迭代器:对可迭代对象用iter()

21.打开文件:
f = open()
f.read()

22.反向迭代器
rev = reversed([1,4,2,3,1])
for i in rev:
    print(i,end=' ')
#输出:1 3 2 4 1 

23.聚合迭代器
a = range(5)
b = list('abcde')
[str(y) + str(x) for x,y in zip(a,b)]
#输出:['a0', 'b1', 'c2', 'd3', 'e4']

24.链式操作
from operator import (add, sub)

def add_or_sub(a, b, oper):
    return (add if oper == '+' else sub)(a, b)

add_or_sub(1, 2, '-')
#输出:-1

25.对象序列化,接口间的调用或者发起的 web 请求,一般使用 json 串传输
class Student():

    def __init__(self,**args):
        self.ids = args['ids']
        self.name = args['name']
        self.address = args['address']
        
xiaoming = Student(ids = 1,name = 'xiaoming',address = '北京')
xiaohong = Student(ids = 2,name = 'xiaohong',address = '南京')

import json

with open(r'C:\Users\Administrator\Desktop\json.txt', 'w') as f:
    json.dump([xiaoming,xiaohong], f, default=lambda obj: obj.__dict__, ensure_ascii=False)
#输出:[
{
"address":"北京",
"ids":1,
"name":"xiaoming"
},
{
"address":"南京",
"ids":2,
"name":"xiaohong"
}
]

25.几个小例子
#去掉最小值和最大值
def score_mean(lst):
    lst.sort()
    lst1 = lst[1:(len(lst)-1)]
    return round(sum(lst1)/len(lst1),1)

lst=[9.1, 9.0,8.1, 9.7, 19,8.2, 8.6,9.8]
score_mean(lst)

#打印99乘法表
for i in range(1, 10):
    for j in range(1, i+1):
        print('%d * %d = %d' % (j, i, j * i) , end="\t")
    print()

#全展开,用递归
from collections.abc import *

def flatten(lst, out_lst=None):
    if out_lst is None:
        out_lst = []
    for i in lst:
        if isinstance(i, Iterable): # 判断i是否可迭代
            flatten(i, out_lst) # 尾数递归
        else:
            out_lst.append(i) # 产生结果
    return out_lst
#输出:[1, 2, 3, 4, 5, 6]

#列表等分
from math import ceil

def divide(lst, size):
    if size <= 0:
        return [lst]
    return [lst[i * size:(i+1)*size] for i in range(0, ceil(len(lst) / size))]

r = divide([1, 3, 5, 7, 9,8,5,3],3)
print(r)
#输出:[[1, 3, 5], [7, 9, 8], [5, 3]]

#列表压缩
def filter_false(lst):
    return list(filter(bool,lst))
r = filter_false([None,0,False,'',[],'nihao',[1,2]])
print(r)
#输出:['nihao', [1, 2]]

#选择最长的列表
def max_length(*lst):
    return max(*lst,key=lambda x: len(x))
r = max_length([1,2,3],[4,5,6,7,8],[9,10])
print(f'最长的列表是{r}')
#输出:最长的列表是[4, 5, 6, 7, 8]

#求众数
def top1(lst):
    return max(lst, default='列表为空', key=lambda v: lst.count(v))
lst = [1, 3, 3, 2, 1, 1, 2]
r = top1(lst)
print(f'{lst}中出现次数最多的元素为:{r}')
#输出:[1, 3, 3, 2, 1, 1, 2]中出现次数最多的元素为:1

#多表之最
def max_lists(*lst):
    return max(max(*lst, key=lambda v: max(v)))

r = max_lists([1, 2, 3], [6, 7, 8], [4, 5])
r
#输出:8

#列表查重
def has_duplicates(lst):
    return len(lst)==len(set(lst))
x = [1, 1, 2, 2, 3, 2, 3, 4, 5, 6]
y = [1, 2, 3, 4, 5]
has_duplicates(x) # False
has_duplicates(y) # True

#浮点数等差数列
def rang(start, stop, n):
    start,stop,n = float('%.2f' % start), float('%.2f' % stop),int('%.d' % n)
    step = (stop-start)/n
    lst = [start]
    while n > 0:
        start,n = start+step,n-1
        lst.append(round((start), 2))
    return lst

rang(1,8,10)
#输出:[1.0, 1.7, 2.4, 3.1, 3.8, 4.5, 5.2, 5.9, 6.6, 7.3, 8.0]

#按条件分组
def bif_by(lst, f):
    return [ [x for x in lst if f(x)],[x for x in lst if not f(x)]]

records = [25,89,31,34]
bif_by(records, lambda x: x<80)
#输出:[[25, 31, 34], [89]]

# map实现向量运算
lst1=[1,2,3,4,5,6]
lst2=[3,4,5,6,3,2]
list(map(lambda x,y:x*y+1,lst1,lst2))
#输出:[4, 9, 16, 25, 16, 13]

#值最大的字典
def max_pairs(dic):
    if len(dic) == 0:
        return dic
    max_val = max(map(lambda v: v[1], dic.items()))
    return [item for item in dic.items() if item[1] == max_val]

r = max_pairs({'a': -10, 'b': 5, 'c': 3, 'd': 5})
print(r) 
#输出:[('b', 5), ('d', 5)]

#合并两个字典
def merge_dict(dic1, dic2):
    return {**dic1, **dic2} 
merge_dict({'a': 1, 'b': 2}, {'c': 3}) 
#输出:{'a': 1, 'b': 2, 'c': 3}

# topn字典
from heapq import nlargest
# 返回字典d前n个最大值对应的键
def topn_dict(d, n):
    return nlargest(n, d, key=lambda k: d[k])

topn_dict({'a': 10, 'b': 8, 'c': 9, 'd': 10}, 3)
#输出:['a', 'd', 'c']

#异位词
from collections import Counter

def anagram(str1, str2):
    return Counter(str1) == Counter(str2)

anagram('eleven+two', 'twelve+one') # True 这是一对神奇的变位词
anagram('eleven', 'twelve') #False

#使用ChainMap合并字典
from collections import ChainMap

dic1 = {'x': 1, 'y': 2 }
dic2 = {'y': 3, 'z': 4 }
merged2 = ChainMap(dic1,dic2)
merged2['x'] = 10
merged2
#输出:ChainMap({'x': 10, 'y': 2}, {'y': 3, 'z': 4})

#命名元组提高可读性
from collections import namedtuple

Point = namedtuple('Point', ['x', 'y', 'z']) # 定义名字为Point的元祖,字段属性有x,y,z
lst = [Point(1.5, 2, 3.0), Point(-0.3, -1.0, 2.1), Point(1.3, 2.8, -2.5)]
print(lst[0].y - lst[1].y)
#输出:3.0

#样本抽样
from random import randint,sample
lst = [randint(0,50) for _ in range(100)]
print(lst[:5])# [38, 19, 11, 3, 6]
lst_sample = sample(lst,10)
print(lst_sample)
#输出:[7, 30, 40, 12, 5]
[39, 39, 19, 45, 0, 10, 42, 29, 3, 1]

#重洗数据集
import random

lst = [random.randint(0,50) for _ in range(10)]
random.shuffle(lst)
lst

#设置随机种子
import random

a = [random.randint(0,50) for _ in range(10)]
random.seed(1)
random.shuffle(a)
a

#10个均匀分布的坐标点
from random import uniform

[(uniform(0,10),uniform(0,10)) for _ in range(10)]

#10个高斯分布的坐标点
from random import gauss

x = range(10)
y = [2*xi+1+gauss(0,1) for xi in x]
points = list(zip(x,y))
points

# chain高效串联多个容器对象
from itertools import chain

a = [1,3,5,0]
b = (2,4,6)
for i in chain(a,b):
    print(i,end=' ')
#输出:1 3 5 0 2 4 6 

# product 案例
def product(*args, repeat=1):
    pools = [tuple(pool) for pool in args] * repeat
    result = [[]]
    for pool in pools:
        result = [x+[y] for x in result for y in pool]
    for prod in result:
        yield tuple(prod)
rtn = product('xyz', '12', repeat=3)
next(rtn)




 

你可能感兴趣的:(python学习)