同步wx订阅号(arXiv每日论文速递),支持后台回复'search 关键词'查询相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)
cs.CL 方向,今日共计22篇
[cs.CL]:
【1】 Multilingual Universal Sentence Encoder for Semantic Retrieval
标题:面向语义检索的多语言通用句子编码器
作者: Yinfei Yang, Ray Kurzweil
链接:https://arxiv.org/abs/1907.04307
【2】 Analyzing Phonetic and Graphemic Representations in End-to-End Automatic Speech Recognition
标题:分析端到端自动语音识别中的语音和字形表示
作者: Yonatan Belinkov, James Glass
备注:Interspeech 2019 (slightly expanded version)
链接:https://arxiv.org/abs/1907.04224
【3】 Clustering of Medical Free-Text Records Based on Word Embeddings
标题:基于词嵌入的医学自由文本记录聚类
作者: Adam Gabriel Dobrakowski, Przemysław Biecek
链接:https://arxiv.org/abs/1907.04152
【4】 Answer Extraction for Why Arabic Questions Answering Systems: EWAQ
标题:为什么阿拉伯语问答系统的答案抽取:EWAQ
作者: Fatima T. AL-Khawaldeh
链接:https://arxiv.org/abs/1907.04149
【5】 Sentiment and position-taking analysis of parliamentary debates: A systematic literature review
标题:议会辩论的情绪和立场分析:一个系统的文献综述
作者: Gavin Abercrombie, Riza Batista-Navarro
链接:https://arxiv.org/abs/1907.04126
【6】 Implicit Discourse Relation Identification for Open-domain Dialogues
标题:开放领域对话的隐式话语关系识别
作者: Mingyu Derek Ma, Marilyn Walker
备注:To appear in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL2019)
链接:https://arxiv.org/abs/1907.03975
【7】 Systematic quantitative analyses reveal the folk-zoological knowledge embedded in folktales
标题:系统的定量分析揭示了民间故事中蕴含的民间动物学知识
作者: Yo Nakawake, Kosuke Sato
链接:https://arxiv.org/abs/1907.03969
【8】 NTT's Machine Translation Systems for WMT19 Robustness Task
标题:NTT用于WMT19健壮性任务的机器翻译系统
作者: Soichiro Murakami, Masaaki Nagata
备注:submitted to WMT 2019
链接:https://arxiv.org/abs/1907.03927
【9】 Hahahahaha, Duuuuude, Yeeessss!: A two-parameter characterization of stretchable words and the dynamics of mistypings and misspellings
标题:哈,Duuuuude,Yeeessss!:可伸展单词的双参数表征以及拼写错误和拼写错误的动态
作者: Tyler J. Gray, Peter Sheridan Dodds
备注:18 pages, 18 figures, and 9 tables. Online appendices at this http URL
链接:https://arxiv.org/abs/1907.03920
【10】 An Intrinsic Nearest Neighbor Analysis of Neural Machine Translation Architectures
标题:神经机器翻译体系结构的本征近邻分析
作者: Hamidreza Ghader, Christof Monz
备注:To be presented at Machine Translation Summit 2019 (MTSUMMIT XVII), Dublin, Ireland
链接:https://arxiv.org/abs/1907.03885
【11】 A Study of the Effect of Resolving Negation and Sentiment Analysis in Recognizing Text Entailment for Arabic
标题:消解否定和情感分析在识别阿拉伯语文本蕴涵中的作用研究
作者: Fatima T. AL-Khawaldeh
链接:https://arxiv.org/abs/1907.03871
【12】 Improving short text classification through global augmentation methods
标题:通过全局增强方法改进短文本分类
作者: Vukosi Marivate, Tshephisho Sefara
链接:https://arxiv.org/abs/1907.03752
【13】 Neural Aspect and Opinion Term Extraction with Mined Rules as Weak Supervision
标题:以挖掘出的规则作为弱监督的神经方面和意见词抽取
作者: Hongliang Dai, Yangqiu Song
备注:ACL 2019
链接:https://arxiv.org/abs/1907.03750
【14】 Learning Neural Sequence-to-Sequence Models from Weak Feedback with Bipolar Ramp Loss
标题:从双极斜坡损失的弱反馈学习神经序列到序列模型
作者: Laura Jehl, Stefan Riezler
备注:Transactions of the Association for Computational Linguistics 2019 Vol. 7, 233-248. Presented at ACL, Florence, Italy
链接:https://arxiv.org/abs/1907.03748
【15】 UW-BHI at MEDIQA 2019: An Analysis of Representation Methods for Medical Natural Language Inference
标题:UW-BHI在MEDIQA 2019年:医学自然语言推理的表示方法分析
作者: William R. Kearns, Jason A. Thomas
链接:https://arxiv.org/abs/1907.04286
【16】 Translating neural signals to text using a Brain-Machine Interface
标题:使用脑-机接口将神经信号转换为文本
作者: Janaki Sheth, William Speier
链接:https://arxiv.org/abs/1907.04265
【17】 Universal One-Dimensional Cellular Automata Derived for Turing Machines and its Dynamical Behaviour
标题:图灵机的通用一维元胞自动机及其动力学行为
作者: Sergio J. Martinez, Shigeru Ninagawa
备注:18 pages, 8 tables, 3 figures. this https URL
链接:https://arxiv.org/abs/1907.04211
【18】 Sequence-to-Sequence Natural Language to Humanoid Robot Sign Language
标题:从序列到序列的自然语言到仿人机器人手语
作者: Jennifer J. Gago, Carlos Balaguer
链接:https://arxiv.org/abs/1907.04198
【19】 Attending to Emotional Narratives
标题:注意情感叙事
作者: Zhengxuan Wu, Desmond C. Ong
备注:Accepted at IEEE Affective Computing and Intelligent Interaction (ACII) 2019; 6 pages + 1 page ref; 4 figures
链接:https://arxiv.org/abs/1907.04197
【20】 On the Semantic Interpretability of Artificial Intelligence Models
标题:论人工智能模型的语义可解释性
作者: Vivian S. Silva, Siegfried Handschuh
备注:17 pages, 4 figures. Submitted to AI Magazine on August, 2018
链接:https://arxiv.org/abs/1907.04105
【21】 Multitask Learning for Blackmarket Tweet Detection
标题:黑市微博检测的多任务学习
作者: Udit Arora, Tanmoy Chakraborty
备注:4 pages, IEEE/ACM International Conference on Social Networks Analysis and Mining (ASONAM) 2019
链接:https://arxiv.org/abs/1907.04072
【22】 Learning by Abstraction: The Neural State Machine
标题:抽象学习:神经状态机
作者: Drew A. Hudson, Christopher D. Manning
链接:https://arxiv.org/abs/1907.03950
翻译:腾讯翻译君