深度学习模型融合stacking

当你的深度学习模型变得很多时,选一个确定的模型也是一个头痛的问题。或者你可以把他们都用起来,就进行模型融合。我主要使用stacking和blend方法。先把代码贴出来,大家可以看一下。

  1 import numpy as np
  2 import pandas as pd
  3 import matplotlib.pyplot as plt
  4 from sklearn.metrics import roc_curve
  5 
  6 SEED = 222
  7 np.random.seed(SEED)
  8 from sklearn.model_selection import train_test_split
  9 
 10 from sklearn.metrics import roc_auc_score
 11 from sklearn.svm import SVC,LinearSVC
 12 from sklearn.naive_bayes import GaussianNB
 13 from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier
 14 from sklearn.linear_model import LogisticRegression
 15 from sklearn.neighbors import KNeighborsClassifier
 16 from sklearn.neural_network import MLPClassifier
 17 
 18 df = pd.read_csv('input.csv')
 19 
 20 def get_train_test():   # 数据处理
 21 
 22     y = 1 * (df.cand_pty_affiliation == "REP")
 23     x = df.drop(['cand_pty_affiliation'],axis=1)
 24     x = pd.get_dummies(x,sparse=True)
 25     x.drop(x.columns[x.std()==0],axis=1,inplace=True)
 26     return train_test_split(x,y,test_size=0.95,random_state=SEED)
 27 
 28 def get_models():   # 模型定义
 29     nb = GaussianNB()
 30     svc = SVC(C=100,probability=True)
 31     knn = KNeighborsClassifier(n_neighbors=3)
 32     lr = LogisticRegression(C=100,random_state=SEED)
 33     nn = MLPClassifier((80, 10), early_stopping=False, random_state=SEED)
 34     gb = GradientBoostingClassifier(n_estimators =100, random_state = SEED)
 35     rf = RandomForestClassifier(n_estimators=1,max_depth=3,random_state=SEED)
 36 
 37     models = {'svm':svc,
 38               'knn':knn,
 39               'naive bayes':nb,
 40               'mlp-nn':nn,
 41               'random forest':rf,
 42               'gbm':gb,
 43               'logistic':lr,
 44               }
 45     return models
 46 
 47 def train_base_learnres(base_learners,inp,out,verbose=True):    # 训练基本模型
 48     if verbose:print("fitting models.")
 49     for i,(name,m) in enumerate(base_learners.items()):
 50         if verbose:print("%s..." % name,end=" ",flush=False)
 51         m.fit(inp,out)
 52         if verbose:print("done")
 53 
 54 def predict_base_learners(pred_base_learners,inp,verbose=True): # 把基本学习器的输出作为融合学习的特征,这里计算特征
 55     p = np.zeros((inp.shape[0],len(pred_base_learners)))
 56     if verbose:print("Generating base learner predictions.")
 57     for i,(name,m) in enumerate(pred_base_learners.items()):
 58         if verbose:print("%s..." % name,end=" ",flush=False)
 59         p_ = m.predict_proba(inp)
 60         p[:,i] = p_[:,1]
 61         if verbose:print("done")
 62     return p
 63 
 64 def ensemble_predict(base_learners,meta_learner,inp,verbose=True):  # 融合学习进行预测
 65     p_pred = predict_base_learners(base_learners,inp,verbose=verbose)    # 测试数据必须先经过基本学习器计算特征
 66     return p_pred,meta_learner.predict_proba(p_pred)[:,1]
 67 
 68 def ensenmble_by_blend():   # blend融合
 69     xtrain_base, xpred_base, ytrain_base, ypred_base = train_test_split(
 70         xtrain, ytrain, test_size=0.5, random_state=SEED
 71     )   # 把数据切分成两部分
 72 
 73     train_base_learnres(base_learners, xtrain_base, ytrain_base)  # 训练基本模型
 74 
 75     p_base = predict_base_learners(base_learners, xpred_base) # 把基本学习器的输出作为融合学习的特征,这里计算特征
 76     meta_learner.fit(p_base, ypred_base)    # 融合学习器的训练
 77     p_pred, p = ensemble_predict(base_learners, meta_learner, xtest)  # 融合学习进行预测
 78     print("\nEnsemble ROC-AUC score: %.3f" % roc_auc_score(ytest, p))
 79 
 80 
 81 from sklearn.base import clone
 82 def stacking(base_learners,meta_learner,X,y,generator): # stacking进行融合
 83     print("Fitting final base learners...",end="")
 84     train_base_learnres(base_learners,X,y,verbose=False)
 85     print("done")
 86 
 87     print("Generating cross-validated predictions...")
 88     cv_preds,cv_y = [],[]
 89     for i,(train_inx,test_idx) in enumerate(generator.split(X)):
 90         fold_xtrain,fold_ytrain = X[train_inx,:],y[train_inx]
 91         fold_xtest,fold_ytest = X[test_idx,:],y[test_idx]
 92 
 93         fold_base_learners = {name:clone(model)
 94                               for name,model in base_learners.items()}
 95         train_base_learnres(fold_base_learners,fold_xtrain,fold_ytrain,verbose=False)
 96         fold_P_base = predict_base_learners(fold_base_learners,fold_xtest,verbose=False)
 97 
 98         cv_preds.append(fold_P_base)
 99         cv_y.append(fold_ytest)
100 
101         print("Fold %i done" %(i+1))
102     print("CV-predictions done")
103     cv_preds = np.vstack(cv_preds)
104     cv_y = np.hstack(cv_y)
105 
106     print("Fitting meta learner...",end="")
107     meta_learner.fit(cv_preds,cv_y)
108     print("done")
109 
110     return base_learners,meta_learner
111 
112 def ensemble_by_stack():
113     from sklearn.model_selection import KFold
114     cv_base_learners,cv_meta_learner = stacking(
115         get_models(),clone(meta_learner),xtrain.values,ytrain.values,KFold(2))
116     P_pred,p = ensemble_predict(cv_base_learners,cv_meta_learner,xtest,verbose=False)
117     print("\nEnsemble ROC-AUC score: %.3f" %roc_auc_score(ytest,p))
118 
119 def plot_roc_curve(ytest,p_base_learners,p_ensemble,labels,ens_label):
120     plt.figure(figsize=(10,8))
121     plt.plot([0,1],[0,1],'k--')
122     cm = [plt.cm.rainbow(i)
123         for i in np.linspace(0,1.0, p_base_learners.shape[1] +1)]
124     for i in range(p_base_learners.shape[1]):
125         p = p_base_learners[:,i]
126         fpr,tpr,_ = roc_curve(ytest,p)
127         plt.plot(fpr,tpr,label = labels[i],c=cm[i+1])
128     fpr, tpr, _ = roc_curve(ytest, p_ensemble)
129     plt.plot(fpr, tpr, label=ens_label, c=cm[0])
130     plt.xlabel('False positive rate')
131     plt.ylabel('True positive rate')
132     plt.title('ROC curve')
133     plt.legend(frameon=False)
134     plt.show()
135 
136 from mlens.ensemble import SuperLearner
137 def use_pack():
138     sl =SuperLearner(
139         folds=10,random_state=SEED,verbose=2,
140         # backend="multiprocessing"
141     )
142     # Add the base learners and the meta learner
143     sl.add(list(base_learners.values()),proba=True)
144     sl.add_meta(meta_learner,proba=True)
145     # Train the ensemble
146     sl.fit(xtrain,ytrain)
147     # Predict the test set
148     p_sl=sl.predict_proba(xtest)
149 
150     print("\nSuper Learner ROC-AUC score: %.3f" % roc_auc_score(ytest,p_sl[:,1]))
151 
152 if __name__ == "__main__":
153     xtrain, xtest, ytrain, ytest = get_train_test()
154     base_learners = get_models()
155 
156     meta_learner = GradientBoostingClassifier(
157         n_estimators=1000,
158         loss="exponential",
159         max_depth=4,
160         subsample=0.5,
161         learning_rate=0.005,
162         random_state=SEED
163     )
164 
165     # ensenmble_by_blend() # blend进行融合
166     # ensemble_by_stack()   # stack进行融合
167     use_pack()  # 调用包进行融合

 

转载于:https://www.cnblogs.com/demo-deng/p/10557267.html

你可能感兴趣的:(深度学习模型融合stacking)