Python---验证哥德巴赫猜想

  • 编写一个函数验证哥德巴赫的猜想:任何一个充分大的偶数(大于等于6)总可以表示成两个素数之和—–要求:将6-100之间的偶数,都用两个素数之和去表示
def function(num):
    lu = []
    for i in range(6, num):
        if i % 2 == 0:
            lu.append(i)

    # 得到所有的素数
    i = 6
    Iu = []
    while True:
        k = 2
        ku = []
        while True:
            if i % k != 0:
                ku.append(k)
                # 素数只有1和本身整除,所以这个素数n里面所有不整数的数的数量ku为素数n-1
                if len(ku) == i - 1:
                    Iu.append(i)
            k += 1
            if k > i:
                break
        i += 1
        if i >= num:
            break

    # 排序
    # for i in range(len(Iu)):
    #     for j in range(1, len(Iu)):
    #         if Iu[i] + Iu[j] == 6:
    #             print("%s + %s = 6" % (Iu[i], Iu[j]))
    #
    # for i in range(len(Iu)):
    #     for j in range(1, len(Iu)):
    #         if Iu[i] + Iu[j] == lu[z] and Iu[i] != Iu[j]:
    #             print("%s + %s = 20" % (Iu[i], Iu[j]))
    dudu = {}
    for z in range(len(lu)):
        for i in range(len(Iu)):
            for j in range(1, len(Iu)):
                if Iu[i] + Iu[j] == lu[z] and Iu[i] != Iu[j]:
                    dudu.setdefault("%s + %s" % (Iu[i], Iu[j]), lu[z])
    # print(dudu)
    for item in dudu:
        print("%s,%s" % (item, dudu[item]))

function(1000)

你可能感兴趣的:(python,语言)