kettle案例-kettle分库分表导入数据

1.案例背景说明

1.该项目为互联网电商项目,随着互联网金融业务的发展,订单量逐渐的增大;
2.当前订单总量为 200003.当前当前订单表为10张(ebiz_third_order),分表分别为
  ebiz_third_order_0
  ebiz_third_order_1
  ebiz_third_order_2
  ebiz_third_order_3
  ebiz_third_order_4
  ebiz_third_order_5
  ebiz_third_order_6
  ebiz_third_order_7
  ebiz_third_order_8
  ebiz_third_order_9
4.10张表中,每张表大概数量为2005.当前数据库连接
6.当前每日订单增量15

2.案例目标

1.10张表扩张为20张表ebiz_third_order_{00~19},表明如下:
  ebiz_third_order_00,ebiz_third_order_01,ebiz_third_order_02,
  ebiz_third_order_03,ebiz_third_order_04,ebiz_third_order_05,
  ebiz_third_order_06,ebiz_third_order_07,ebiz_third_order_08,
  ebiz_third_order_09,ebiz_third_order_10,ebiz_third_order_11,
  ebiz_third_order_12,ebiz_third_order_13,ebiz_third_order_14,
  ebiz_third_order_15,ebiz_third_order_16,ebiz_third_order_17,
  ebiz_third_order_18,ebiz_third_order_19
2.需要先将10张表的数据同步到20张表中
3.后续新增数据不再存储在之前的10张表中,新增数据全部存储新增的20张表

建表sql

CREATE TABLE `ebiz_third_order_00` (
    `ORDER_ID` BIGINT(20) NOT NULL,
    `BUSINESS_TYPE` VARCHAR(20) NULL DEFAULT NULL,
    `PARTNER` VARCHAR(50) NULL DEFAULT NULL,
    `PARTNER_ORDER_NO` VARCHAR(50) NULL DEFAULT NULL,
    `PARTNER_REF_NO` VARCHAR(50) NULL DEFAULT NULL,
    `PARTNER_USER_ID` VARCHAR(50) NULL DEFAULT NULL,
    `PARTNER_USER_NAME` VARCHAR(50) NULL DEFAULT NULL,
    `PARTNER_PAY_NO` VARCHAR(50) NULL DEFAULT NULL,
    `PARTNER_PAY_DATE` DATETIME NULL DEFAULT NULL,
    `SKU_CODE` VARCHAR(20) NULL DEFAULT NULL,
    `CUSTOMER_ID` DECIMAL(19,0) NULL DEFAULT NULL,
    `TG_PLATFORM` VARCHAR(50) NULL DEFAULT NULL,
    `TG_ORDER_NO` VARCHAR(30) NULL DEFAULT NULL,
    `BUSINESS_NO` VARCHAR(200) NULL DEFAULT NULL,
    `TG_PRODUCT_CODE` VARCHAR(20) NULL DEFAULT NULL,
    `AMOUNT` DECIMAL(12,2) NULL DEFAULT NULL,
    `BUSINESS_REMARK` VARCHAR(4000) NULL DEFAULT NULL,
    `CALLBACK_URL` VARCHAR(1000) NULL DEFAULT NULL,
    `STATUS` VARCHAR(20) NULL DEFAULT NULL,
    `CREATED_DATE` DATETIME NULL DEFAULT NULL,
    `MODIFIED_DATE` DATETIME NULL DEFAULT NULL,
    `CREATED_USER` VARCHAR(45) NULL DEFAULT NULL,
    `MODIFIED_USER` VARCHAR(45) NULL DEFAULT NULL,
    `IS_DELETE` INT(1) NULL DEFAULT NULL,
    PRIMARY KEY (`ORDER_ID`),
    INDEX `EBIZ_THIRD_ORDER_INDEX_1` (`PARTNER_ORDER_NO`),
    INDEX `EBIZ_THIRD_ORDER_INDEX_2` (`PARTNER_REF_NO`),
    INDEX `EBIZ_THIRD_ORDER_INDEX_3` (`BUSINESS_TYPE`),
    INDEX `EBIZ_THIRD_ORDER_INDEX_4` (`PARTNER`),
    INDEX `EBIZ_THIRD_ORDER_INDEX_5` (`TG_ORDER_NO`),
    INDEX `EBIZ_THIRD_ORDER_INDEX_6` (`STATUS`),
    INDEX `ebiz_third_order_index_7` (`CUSTOMER_ID`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
;

其他的ebiz_third_order00到~19以及ebiz_third_order_0~9都是一样的方法,就是表名变化一下就可以了

3.案例备注

1.涉及到分表的参照表内容,在这里不赘述,详见 

https://blog.csdn.net/u014636209/article/details/82141779

4.kettle

kettle案例-kettle分库分表导入数据_第1张图片

4.1. 表输入

4.1.1.主要是拉去0-9的原始数据

select * from ebiz_third_order_0 o where order_id >=22900000 and order_id <22975800
union all
select * from ebiz_third_order_1 o where order_id >=22900000 and order_id <22975800
union all
select * from ebiz_third_order_2 o where order_id >=22900000 and order_id <22975800
union all
select * from ebiz_third_order_3 o where order_id >=22900000 and order_id <22975800
union all
select * from ebiz_third_order_4 o where order_id >=22900000 and order_id <22975800
union all
select * from ebiz_third_order_5 o where order_id >=22900000 and order_id <22975800
union all
select * from ebiz_third_order_6 o where order_id >=22900000 and order_id <22975800
union all
select * from ebiz_third_order_7 o where order_id >=22900000 and order_id <22975800
union all
select * from ebiz_third_order_8 o where order_id >=22900000 and order_id <22975800
union all
select * from ebiz_third_order_9 o where order_id >=22900000 and order_id <22975800

4.1.2.表输入控件截图

kettle案例-kettle分库分表导入数据_第2张图片

4.1.3.备注

1.从效率上来讲,建议每次拉去300-400万的数据,具体要看每条记录的内容大小;
2.9个表union all 数据 性能还好,不是特别慢
3.注意用主键Order_id

4.2. 获取新表OrderId

4.2.1 java代码

public boolean processRow(StepMetaInterface smi, StepDataInterface sdi) throws Exception  
{  

    Object[] r = getRow();  

    if (r == null) {
      setOutputDone();
      return false;
    }  

    r = createOutputRow(r, data.outputRowMeta.size());

    String partner = get(Fields.In, "PARTNER").getString(r);
    String partnerOrderNo = get(Fields.In, "PARTNER_ORDER_NO").getString(r);
    String businessType = get(Fields.In, "BUSINESS_TYPE").getString(r);
    String originOrderId = get(Fields.In, "ORDER_ID").getString(r);
    String newOrderId=(Long.valueOf(originOrderId)*100 + Math.abs((partner+partnerOrderNo+businessType).hashCode()%100))+"";

    get(Fields.Out,"ORDER_ID").setValue(r,Long.valueOf(newOrderId));

    putRow(data.outputRowMeta, r);

    return true;
}

4.2.2 业务功能

1.这段代码主要是决定新表的OrderId逻辑
2.新表的OrderId=原OrderId*100+Math.abs((partner+partnerOrderNo+businessType).hashCode()%100)

4.2.3.截图

kettle案例-kettle分库分表导入数据_第3张图片

4.3.新表表名

4.3.1. java代码

public boolean processRow(StepMetaInterface smi, StepDataInterface sdi) throws Exception  
{  

    Object[] r = getRow();  

    if (r == null) {
      setOutputDone();
      return false;
    }  

    r = createOutputRow(r, data.outputRowMeta.size());

    String partner = get(Fields.In, "PARTNER").getString(r);
    String partnerOrderNo = get(Fields.In, "PARTNER_ORDER_NO").getString(r);
    String businessType = get(Fields.In, "BUSINESS_TYPE").getString(r);

    String order_n =String.valueOf(Math.abs((partner+partnerOrderNo+businessType).hashCode()%20));
    if (order_n.length()<2) {
        order_n = "0" + order_n;
    }
    get(Fields.Out,"table_name").setValue(r,"ebiz_third_order_"+order_n);
    putRow(data.outputRowMeta, r);

    return true;
}

4.3.2.截图说明

kettle案例-kettle分库分表导入数据_第4张图片

1.注意从流中定义的新的标量,必须在左下方,将字段设置一下,这样,在下一个流程中,才能拿到table_name的值

4.3.2.业务功能

1.新表是202.Math.abs((partner+partnerOrderNo+businessType).hashCode()%20)
3.用partner parnterOrderNo bussinessType三个字段加起来进行hash取余数,由于我们的表都是00~19两位数的,所以一位的我们补0

4.4.新表插入

4.4.1.截图1-主选项

kettle案例-kettle分库分表导入数据_第5张图片

4.4.2.截图2-数据库字段

kettle案例-kettle分库分表导入数据_第6张图片

你可能感兴趣的:(kettle)